scholarly journals A Mixed, Unified Forward/Inverse Framework for Earthquake Problems: Fault Implementation and Coseismic Slip Estimate

2021 ◽  
Author(s):  
Simone Puel ◽  
Eldar Khattatov ◽  
Umberto Villa ◽  
Dunyu Liu ◽  
Omar Ghattas ◽  
...  

We introduce a new finite-element (FE) based computational framework to solve forward and inverse elastic deformation problems for earthquake faulting via the adjoint method. Based on two advanced computational libraries, FEniCS and hIPPYlib for the forward and inverse problems, respectively, this framework is flexible, transparent, and easily extensible. We represent a fault discontinuity through a mixed FE elasticity formulation, which approximates the stress with higher order accuracy and exposes the prescribed slip explicitly in the variational form without using conventional split node and decomposition discrete approaches. This also allows the first order optimality condition, i.e., the vanishing of the gradient, to be expressed in continuous form, which leads to consistent discretizations of all field variables, including the slip. We show comparisons with the standard, pure displacement formulation and a model containing an in-plane mode II crack, whose slip is prescribed via the split node technique. We demonstrate the potential of this new computational framework by performing a linear coseismic slip inversion through adjoint-based optimization methods, without requiring computation of elastic Green's functions. Specifically, we consider a penalized least squares formulation, which in a Bayesian setting - under the assumption of Gaussian noise and prior - reflects the negative log of the posterior distribution. The comparison of the inversion results with a standard, linear inverse theory approach based on Okada's solutions shows analogous results. Preliminary uncertainties are estimated via eigenvalue analysis of the Hessian of the penalized least squares objective function. Our implementation is fully open-source and Jupyter notebooks to reproduce our results are provided. The extension to a fully Bayesian framework for detailed uncertainty quantification and non-linear inversions, including for heterogeneous media earthquake problems, will be analyzed in a forthcoming paper.

Geophysics ◽  
2001 ◽  
Vol 66 (3) ◽  
pp. 845-860 ◽  
Author(s):  
François Clément ◽  
Guy Chavent ◽  
Susana Gómez

Migration‐based traveltime (MBTT) formulation provides algorithms for automatically determining background velocities from full‐waveform surface seismic reflection data using local optimization methods. In particular, it addresses the difficulty of the nonconvexity of the least‐squares data misfit function. The method consists of parameterizing the reflectivity in the time domain through a migration step and providing a multiscale representation for the smooth background velocity. We present an implementation of the MBTT approach for a 2-D finite‐difference (FD) full‐wave acoustic model. Numerical analysis on a 2-D synthetic example shows the ability of the method to find much more reliable estimates of both long and short wavelengths of the velocity than the classical least‐squares approach, even when starting from very poor initial guesses. This enlargement of the domain of attraction for the global minima of the least‐squares misfit has a price: each evaluation of the new objective function requires, besides the usual FD full‐wave forward modeling, an additional full‐wave prestack migration. Hence, the FD implementation of the MBTT approach presented in this paper is expected to provide a useful tool for the inversion of data sets of moderate size.


Author(s):  
Hervé Cardot ◽  
Pascal Sarda

This article presents a selected bibliography on functional linear regression (FLR) and highlights the key contributions from both applied and theoretical points of view. It first defines FLR in the case of a scalar response and shows how its modelization can also be extended to the case of a functional response. It then considers two kinds of estimation procedures for this slope parameter: projection-based estimators in which regularization is performed through dimension reduction, such as functional principal component regression, and penalized least squares estimators that take into account a penalized least squares minimization problem. The article proceeds by discussing the main asymptotic properties separating results on mean square prediction error and results on L2 estimation error. It also describes some related models, including generalized functional linear models and FLR on quantiles, and concludes with a complementary bibliography and some open problems.


Author(s):  
Jianqing Fan ◽  
Runze Li ◽  
Cun-Hui Zhang ◽  
Hui Zou

2018 ◽  
Vol 45 (12) ◽  
pp. 1211001 ◽  
Author(s):  
赵恒 Zhao Heng ◽  
陈娱欣 Chen Yuxin ◽  
续小丁 Xu Xiaoding ◽  
胡波 Hu Bo

Sign in / Sign up

Export Citation Format

Share Document