scholarly journals Imprint of the Pacific Walker Circulation in global precipitation δ18O

2021 ◽  
Author(s):  
Georgina Falster ◽  
Bronwen Konecky ◽  
Midhun Madhavan ◽  
Samantha Stevenson ◽  
Sloan Coats

Characterising variability in the global water cycle is fundamental to predicting impacts of future climate change; understanding the role of the Pacific Walker circulation (PWC) in the regional expression of global water cycle changes is critical to understanding this variability. Water isotopes are ideal tracers of the role of the PWC in global water cycling, because they retain information about circulation-dependent processes including moisture source, transport, and delivery. We collated publicly-available measurements of precipitation δ18O (δ18OP), and used novel data processing techniques to synthesise long (34-year), globally-distributed composite records from temporally discontinuous δ18OP measurements. We investigated relationships between global-scale δ18OP variability and PWC strength, as well as other possible drivers of global δ18OP variability—including the El Niño Southern Oscillation (ENSO) and global mean temperature—and used isotope-enabled climate model simulations to assess potential biases arising from uneven geographical distribution of the observations or our data processing methodology. Co-variability underlying the δ18OP composites is more strongly correlated with the PWC (r = 0.74) than any other index of climate variability tested. We propose that the PWC imprint in global δ18OP arises from multiple complementary processes, including PWC-related changes in moisture source and transport length, and a PWC- or ENSO-driven ‘amount effect’ in tropical regions. The clear PWC imprint in global δ18OP implies a strong PWC influence on the regional expression of global water cycle variability on interannual to decadal timescales, and hence that uncertainty in the future state of the PWC translates to uncertainties in future changes in the global water cycle.

2021 ◽  
pp. 1-55
Author(s):  
Georgina Falster ◽  
Bronwen Konecky ◽  
Midhun Madhavan ◽  
Samantha Stevenson ◽  
Sloan Coats

AbstractCharacterising variability in the global water cycle is fundamental to predicting impacts of future climate change; understanding the role of the Pacific Walker circulation (PWC) in the regional expression of global water cycle changes is critical to understanding this variability. Water isotopes are ideal tracers of the role of the PWC in global water cycling, because they retain information about circulation-dependent processes including moisture source, transport, and delivery. We collated publicly-available measurements of precipitation δ18O (δ18OP), and used novel data processing techniques to synthesise long (34-year), globally-distributed composite records from temporally discontinuous δ18OP measurements. We investigated relationships between global-scale δ18OP variability and PWC strength, as well as other possible drivers of global δ18OP variability—including the El Niño Southern Oscillation (ENSO) and global mean temperature—and used isotope-enabled climate model simulations to assess potential biases arising from uneven geographical distribution of the observations or our data processing methodology. Co-variability underlying the δ18OP composites is more strongly correlated with the PWC (r = 0.74) than any other index of climate variability tested. We propose that the PWC imprint in global δ18OP arises from multiple complementary processes, including PWC-related changes in moisture source and transport length, and a PWC- or ENSO-driven ‘amount effect’ in tropical regions. The clear PWC imprint in global δ18OP implies a strong PWC influence on the regional expression of global water cycle variability on interannual to decadal timescales, and hence that uncertainty in the future state of the PWC translates to uncertainties in future changes in the global water cycle.


Author(s):  
Jun Korenaga ◽  
Noah J. Planavsky ◽  
David A. D. Evans

The bulk Earth composition contains probably less than 0.3% of water, but this trace amount of water can affect the long-term evolution of the Earth in a number of different ways. The foremost issue is the occurrence of plate tectonics, which governs almost all aspects of the Earth system, and the presence of water could either promote or hinder the operation of plate tectonics, depending on where water resides. The global water cycle, which circulates surface water into the deep mantle and back to the surface again, could thus have played a critical role in the Earth’s history. In this contribution, we first review the present-day water cycle and discuss its uncertainty as well as its secular variation. If the continental freeboard has been roughly constant since the Early Proterozoic, model results suggest long-term net water influx from the surface to the mantle, which is estimated to be 3−4.5×10 14  g yr −1 on the billion years time scale. We survey geological and geochemical observations relevant to the emergence of continents above the sea level as well as the nature of Precambrian plate tectonics. The global water cycle is suggested to have been dominated by regassing, and its implications for geochemical cycles and atmospheric evolution are also discussed. This article is part of the themed issue ‘The origin, history and role of water in the evolution of the inner Solar System’.


1989 ◽  
Vol 289 (4) ◽  
pp. 455-483 ◽  
Author(s):  
Y. Tardy ◽  
R. N'Kounkou ◽  
J.-L. Probst

2007 ◽  
Vol 88 (3) ◽  
pp. 375-384 ◽  
Author(s):  
E. S. Takle ◽  
J. Roads ◽  
B. Rockel ◽  
W. J. Gutowski ◽  
R. W. Arritt ◽  
...  

A new approach, called transferability intercomparisons, is described for advancing both understanding and modeling of the global water cycle and energy budget. Under this approach, individual regional climate models perform simulations with all modeling parameters and parameterizations held constant over a specific period on several prescribed domains representing different climatic regions. The transferability framework goes beyond previous regional climate model intercomparisons to provide a global method for testing and improving model parameterizations by constraining the simulations within analyzed boundaries for several domains. Transferability intercomparisons expose the limits of our current regional modeling capacity by examining model accuracy on a wide range of climate conditions and realizations. Intercomparison of these individual model experiments provides a means for evaluating strengths and weaknesses of models outside their “home domains” (domain of development and testing). Reference sites that are conducting coordinated measurements under the continental-scale experiments under the Global Energy and Water Cycle Experiment (GEWEX) Hydrometeorology Panel provide data for evaluation of model abilities to simulate specific features of the water and energy cycles. A systematic intercomparison across models and domains more clearly exposes collective biases in the modeling process. By isolating particular regions and processes, regional model transferability intercomparisons can more effectively explore the spatial and temporal heterogeneity of predictability. A general improvement of model ability to simulate diverse climates will provide more confidence that models used for future climate scenarios might be able to simulate conditions on a particular domain that are beyond the range of previously observed climates.


Science ◽  
2012 ◽  
Vol 336 (6080) ◽  
pp. 455-458 ◽  
Author(s):  
P. J. Durack ◽  
S. E. Wijffels ◽  
R. J. Matear

Sign in / Sign up

Export Citation Format

Share Document