precipitation δ18o
Recently Published Documents


TOTAL DOCUMENTS

41
(FIVE YEARS 13)

H-INDEX

18
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Georgina Falster ◽  
Bronwen Konecky ◽  
Midhun Madhavan ◽  
Samantha Stevenson ◽  
Sloan Coats

Characterising variability in the global water cycle is fundamental to predicting impacts of future climate change; understanding the role of the Pacific Walker circulation (PWC) in the regional expression of global water cycle changes is critical to understanding this variability. Water isotopes are ideal tracers of the role of the PWC in global water cycling, because they retain information about circulation-dependent processes including moisture source, transport, and delivery. We collated publicly-available measurements of precipitation δ18O (δ18OP), and used novel data processing techniques to synthesise long (34-year), globally-distributed composite records from temporally discontinuous δ18OP measurements. We investigated relationships between global-scale δ18OP variability and PWC strength, as well as other possible drivers of global δ18OP variability—including the El Niño Southern Oscillation (ENSO) and global mean temperature—and used isotope-enabled climate model simulations to assess potential biases arising from uneven geographical distribution of the observations or our data processing methodology. Co-variability underlying the δ18OP composites is more strongly correlated with the PWC (r = 0.74) than any other index of climate variability tested. We propose that the PWC imprint in global δ18OP arises from multiple complementary processes, including PWC-related changes in moisture source and transport length, and a PWC- or ENSO-driven ‘amount effect’ in tropical regions. The clear PWC imprint in global δ18OP implies a strong PWC influence on the regional expression of global water cycle variability on interannual to decadal timescales, and hence that uncertainty in the future state of the PWC translates to uncertainties in future changes in the global water cycle.


2021 ◽  
Vol 17 (3) ◽  
pp. 1119-1138
Author(s):  
Sarah E. Parker ◽  
Sandy P. Harrison ◽  
Laia Comas-Bru ◽  
Nikita Kaushal ◽  
Allegra N. LeGrande ◽  
...  

Abstract. Reconstruction of past changes in monsoon climate from speleothem oxygen isotope (δ18O) records is complex because δ18O signals can be influenced by multiple factors including changes in precipitation, precipitation recycling over land, temperature at the moisture source, and changes in the moisture source region and transport pathway. Here, we analyse >150 speleothem records of the Speleothem Isotopes Synthesis and AnaLysis (SISAL) database to produce composite regional trends in δ18O in monsoon regions; compositing minimises the influence of site-specific karst and cave processes that can influence individual site records. We compare speleothem δ18O observations with isotope-enabled climate model simulations to investigate the specific climatic factors causing these regional trends. We focus on differences in δ18O signals between the mid-Holocene, the peak of the Last Interglacial (Marine Isotope Stage 5e) and the Last Glacial Maximum as well as on δ18O evolution through the Holocene. Differences in speleothem δ18O between the mid-Holocene and the Last Interglacial in the East Asian and Indian monsoons are small, despite the larger summer insolation values during the Last Interglacial. Last Glacial Maximum δ18O values are significantly less negative than interglacial values. Comparison with simulated glacial–interglacial δ18O shows that changes are principally driven by global shifts in temperature and regional precipitation. Holocene speleothem δ18O records show distinct and coherent regional trends. Trends are similar to summer insolation in India, China and southwestern South America, but they are different in the Indonesian–Australian region. Redundancy analysis shows that 37 % of Holocene variability can be accounted for by latitude and longitude, supporting the differentiation of records into individual monsoon regions. Regression analysis of simulated precipitation δ18O and climate variables show significant relationships between global Holocene monsoon δ18O trends and changes in precipitation, atmospheric circulation and (to a lesser extent) source area temperature, whereas precipitation recycling is non-significant. However, there are differences in regional-scale mechanisms: there are clear relationships between changes in precipitation and δ18O for India, southwestern South America and the Indonesian–Australian regions but not for the East Asian monsoon. Changes in atmospheric circulation contribute to δ18O trends in the East Asian, Indian and Indonesian–Australian monsoons, and a weak source area temperature effect is observed over southern and central America and Asia. Precipitation recycling is influential in southwestern South America and southern Africa. Overall, our analyses show that it is possible to differentiate the impacts of specific climatic mechanisms influencing precipitation δ18O and use this analysis to interpret changes in speleothem δ18O.


2021 ◽  
Author(s):  
Robert Field ◽  
Laia Andreu-Hayles ◽  
Rosanne D'Arrigo ◽  
Rose Oelkers ◽  
Brian Luckman ◽  
...  

Abstract Oxygen stable isotopes measured in tree rings have been useful for reconstructing climate variability and explaining changes in physiological processes occurring in forests, complementing other more widely studied tree-ring parameters such as ring width. Here, we analyzed the relationships between different climate parameters and annually resolved tree-ring δ18O records (d18OTR) from white spruce (Picea glauca [Moench]Voss) trees located near Tungsten, Northwest Territories, Canada, and used the NASA GISS ModelE2 isotopically equipped general circulation model (GCM) to interpret the relationships in an idealized sense. The d18OTR series were primarily related to temperature variations in spring and summer, likely through temperature effects on the precipitation δ18O with a combination of evaporative enrichment at leaf level in summer. The GCM simulations showed significant positive relationships between modelled precipitation δ18O over the study region and surface temperature and geopotential height over northwestern North America, with stronger patterns during fall winter than during spring-summer. The modelled precipitation δ18O was only significantly associated with moisture transport during the fall-winter season. The d18OTR showed similar correlation patterns to modelled precipitation δ18O during spring-summer, with significant positive correlations with surface temperature and geopotential height, but no correlations with moisture transport. Overall, the d18OTR records for northwestern Canada reflect the same significant large-scale climate patterns as precipitation δ18O for spring-summer, and therefore have potential for reconstructions past atmospheric dynamics in addition to temperature variability.


2021 ◽  
Vol 554 ◽  
pp. 116665
Author(s):  
Wusheng Yu ◽  
Tandong Yao ◽  
Lonnie G. Thompson ◽  
Jean Jouzel ◽  
Huabiao Zhao ◽  
...  

Water ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2386 ◽  
Author(s):  
Maša Surić ◽  
György Czuppon ◽  
Robert Lončarić ◽  
Neven Bočić ◽  
Nina Lončar ◽  
...  

Speleothems deposited from cave drip waters retain, in their calcite lattice, isotopic records of past environmental changes. Among other proxies, δ18O is recognized as very useful for this purpose, but its accurate interpretation depends on understanding the relationship between precipitation and drip water δ18O, a relationship controlled by climatic settings. We analyzed water isotope data of 17 caves from different latitudes and altitudes in relatively small but diverse Croatian karst regions in order to distinguish the dominant influences. Drip water δ18O in colder caves generally shows a greater resemblance to the amount-weighted mean of precipitation δ18O compared to warmer sites, where evaporation plays an important role. However, during glacial periods, today’s ‘warm’ sites were cold, changing the cave characteristics and precipitation δ18O transmission patterns. Superimposed on these settings, each cave has site-specific features, such as morphology (descending or ascending passages), altitude and infiltration elevation, (micro) location (rain shadow or seaward orientation), aquifer architecture (responsible for the drip water homogenization) and cave atmosphere (governing equilibrium or kinetic fractionation). This necessitates an individual approach and thorough monitoring for best comprehension.


Water ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 2132 ◽  
Author(s):  
Tao Wang ◽  
Ting-Yong Li ◽  
Jian Zhang ◽  
Yao Wu ◽  
Chao-Jun Chen ◽  
...  

Siberia and Central Asia are located at middle to high latitudes, encompassing a large landlocked area of the Eurasian continent and vast tracts of permafrost, which are sensitive to global climate change. Here, we investigated the data from 15 Global Network of Isotopes in Precipitation (GNIP) stations to clarify the relationship between precipitation δ18O (δ18OP) and the local temperature and precipitation amount on the monthly, seasonal, and annual timescales. Three main conclusions as following: (1) On the monthly time scale, the variation in δ18OP is mainly controlled by the “temperature effect”. (2) The weighted average value of precipitation δ18O (δ18Ow) exhibited “temperature effect” over 60° N–70° N. However, δ18Ow was dominated by multiple factors from 40° N to 60° N (e.g., the North Atlantic Oscillation (NAO) and water vapor source changes). (3) The variations of δ18OW can be attributed to the changes in pathway of the westerly dominated by the NAO at annual timescale. Therefore, it is possible to reconstruct the histories of past atmospheric circulations and water vapor sources in this region via δ18O in geologic archives, e.g., speleothem and ice core records.


2020 ◽  
Author(s):  
Sarah E. Parker ◽  
Sandy P. Harrison ◽  
Laia Comas-Bru ◽  
Nikita Kaushal ◽  
Allegra N. LeGrande ◽  
...  

Abstract. Reconstruction of past changes in monsoon climate from speleothem oxygen isotope (δ18O) records is complex because δ18O signals can be influenced by multiple factors including changes in precipitation, precipitation recycling over land, temperature at the moisture source and changes in the moisture source region and transport pathway. Here, we analyse > 150 speleothem records from version 2 of the Speleothem Isotopes Synthesis and Analysis (SISAL) database to produce composite regional trends in δ18O in monsoon regions; compositing minimises the influence of site-specific karst and cave processes that can influence individual site records. We compare speleothem δ18O observations with isotope-enabled climate model simulations to investigate the specific climatic factors causing these regional trends. We focus on differences in δ18O signals between interglacial (mid-Holocene and Last Interglacial) and glacial (Last Glacial Maximum) states, and on δ18O evolution through the Holocene. Differences in speleothem δ18O between the mid-Holocene and Last Interglacial in the East Asian and Indian monsoons are small, despite the larger summer insolation values during the Last Interglacial. Last Glacial Maximum δ18O values are significantly less negative than interglacial values. Comparison with simulated glacial-interglacial δ18O shows that changes are principally driven by global shifts in temperature and regional precipitation. Holocene speleothem δ18O records show distinct and coherent regional trends. Trends are similar to summer insolation in India, China and southwestern South America, but different in the Indonesian-Australian region. Redundancy analysis shows that 37 % of Holocene variability can be accounted for by latitude and longitude, supporting the differentiation of records into individual monsoon regions. Regression analysis of simulated precipitation δ18O and climate variables show that global Holocene monsoon δ18O trends are driven by changes in precipitation, atmospheric circulation and (to a lesser extent) source area temperature, whilst precipitation recycling is non-significant. However, there are differences in regional scale mechanisms; there are clear relationships between changes in precipitation and in δ18O for India, southwestern South America and the Indonesian-Australian regions, but not for the East Asian monsoon. Changes in atmospheric circulation contributes to δ18O trends in the East Asian, Indian and Indonesian-Australian monsoons, and a weak source area temperature effect is observed over southern and central America and Asia. Precipitation recycling is influential in southwestern South America and southern Africa. Overall, our analyses show that it is possible to differentiate the impacts of specific climatic mechanisms influencing precipitation δ18O and use this analysis to interpret changes in speleothem δ18O.


2020 ◽  
Vol 16 (1) ◽  
pp. 211-225 ◽  
Author(s):  
Haiwei Zhang ◽  
Hai Cheng ◽  
Yanjun Cai ◽  
Christoph Spötl ◽  
Ashish Sinha ◽  
...  

Abstract. This study examines the seasonality of precipitation amount and δ18O over the monsoon region of China (MRC). We found that the precipitation amount associated with the East Asian summer monsoon (EASM) in the spring persistent rain (SPR) region is equivalent to that of the nonsummer monsoon (NSM). The latter contributes ∼50 % to amount-weighted annual δ18O values, in contrast with other areas in the MRC, where the δ18O of annual precipitation is dominated by EASM precipitation. Interannual relationships between the El Niño–Southern Oscillation (ENSO) index, simulated δ18O data from IsoGSM, and seasonal precipitation amount in the SPR region were also examined. We found that on interannual timescales, the seasonality of precipitation amount (EASM ∕ NSM ratio) was modulated by ENSO and primarily influences the variability of amount-weighted annual precipitation δ18O values in the SPR region, although integrated regional convection and moisture source and transport distance may also play subordinate roles. During El Niño (La Niña) phases, less (more) EASM and more (less) NSM precipitation leading to lower (higher) EASM ∕ NSM precipitation amount ratios results in higher (lower) amount-weighted annual precipitation δ18O values and, consequently, in higher (lower) speleothem δ18O values. Characterizing spatial differences in seasonal precipitation is, therefore, key to correctly interpreting speleothem δ18O records from the MRC.


Sign in / Sign up

Export Citation Format

Share Document