scholarly journals Mesophotic depth biogenic accumulations (“biogenic mounds”) offshore the Maltese Islands, central Mediterranean Sea

2021 ◽  
Author(s):  
Or Bialik ◽  
Andrea Varzi ◽  
Ruth Duran Gallego ◽  
Timothy Le Bas ◽  
Adam Gauci ◽  
...  

The mesophotic domain is a poorly explored part of the oceans, notably in the Mediterranean Sea. Benthic communities in these depths are not well documented and as such are under higher risk from anthropogenic impacts. Hard substrate habitats in this depth window are not common and are a key ecotope. The Malta Plateau in the central Mediterranean, which is characterised by low sedimentation rates, offers a potentially unexplored domain for these features. Bathymetric and backscatter data offshore of the eastern coast of the island of Malta were used to characterise the benthic habitats. >1700 small structures were identified in mesophotic depth and verified by dives to be biogenic mounds. These mounds extend from several meters to tens of meters in diameter and occur in two main depth windows 40 to 83 mbpsl and 83 to 120 mbpsl, each formed probably in a different stage along the last glacial cycle. The mounds are composed of interlocking bioconstruction by encrusting organisms and are colonised by sponges and various cold water corals (most of which are protected). This unique and important habitat is currently under grave threat by human activity, most immediately by trawling activity.

2017 ◽  
pp. 1-9 ◽  
Author(s):  
Mario V Balzan ◽  
David Genoud ◽  
Pierre Rasmont ◽  
Maximilian Schwarz ◽  
Denis Michez

A total of 95 bee species have been recorded from the Maltese Islands (central Mediterranean Sea).  The aim of the present note is to report newly recorded species within the study area.  A total of nine new species belonging to four families are recorded here: Andrenidae (1 species), Apidae (1 species), Halictidae (5 species), and Megachilidae (2 species).


1999 ◽  
Vol 51 (3) ◽  
pp. 317-327 ◽  
Author(s):  
Amos Frumkin ◽  
Derek C. Ford ◽  
Henry P. Schwarcz

AbstractA long radiometrically dated oxygen isotopic record of continental climatic variations since the penultimate glaciation was obtained from a stalagmite deposited in a sealed cave in Jerusalem. This record shows that speleothems have the potential of assigning dates to long- and short-term climatic events, with possible refining of Milankovitch tuning of ice and marine records which themselves are not datable. Short-term (∼1000-yr) events are very significant in the region, reaching ∼50% of glacial/interglacial fluctuations. The Mediterranean Sea was the most probable source of local precipitation throughout the last glacial cycle.


2009 ◽  
Vol 10 (2) ◽  
pp. 63 ◽  
Author(s):  
C. MIFSUD ◽  
M. TAVIANI ◽  
S. STOHR

The MARCOS cruise, which took place in the South Central Mediterranean Sea on board the RV ‘Urania’, resulted in the collection of 27 species of Echinodermata from shallow to bathyal depths, many from around Malta (the Fisheries Management Zone). The fauna is represented by common to rare taxa already reported from the Mediterranean with the exception of the amphi-Atlantic ophiuroid Ophiotreta valenciennesi rufescens (Koehler, 1896), recorded from the Mediterranean Basin for the first time. Odontaster mediterraneus (von Marenzeller, 1893) and Luidia sarsi Lutken, 1858 are also first records for the Maltese Islands.


2004 ◽  
Vol 211 (1-2) ◽  
pp. 21-43 ◽  
Author(s):  
B.A.A. Hoogakker ◽  
R.G. Rothwell ◽  
E.J. Rohling ◽  
M. Paterne ◽  
D.A.V. Stow ◽  
...  

2010 ◽  
Vol 11 (2) ◽  
pp. 381 ◽  
Author(s):  
A. ZENETOS ◽  
S. GOFAS ◽  
M. VERLAQUE ◽  
M.E. CINAR ◽  
J.E. GARCIA RASO ◽  
...  

The state-of-art on alien species in the Mediterranean Sea is presented, making distinctions among the four subregions defined in the EU Marine Strategy Framework Directive: (i) the Western Mediterranean Sea (WMED); (ii) the Central Mediterranean Sea (CMED); (iii) the Adriatic Sea (ADRIA); and (iv) the Eastern Mediterranean Sea (EMED). The updated checklist (December 2010) of marine alien species within each subregion, along with their acclimatization status and origin, is provided. A total of 955 alien species is known in the Mediterranean, the vast majority of them having being introduced in the EMED (718), less in the WMED (328) and CMED (267) and least in the Adriatic (171). Of these, 535 species (56%) are established in at least one area.Despite the collective effort of experts who attempted in this work, the number of introduced species remains probably underestimated. Excluding microalgae, for which knowledge is still insufficient, aliens have increased the total species richness of the Mediterranean Sea by 5.9%. This figure should not be directly read as an indication of higher biodiversity, as spreading of so many aliens within the basin is possibly causing biotic homogenization. Thermophilic species, i.e. Indo-Pacific, Indian Ocean, Red Sea, Tropical Atlantic, Tropical Pacific, and circum(sub)tropical, account for 88.4% of the introduced species in the EMED, 72.8% in the CMED, 59.3% in the WMED and 56.1% in the Adriatic. Cold water species, i.e. circumboreal, N Atlantic, and N Pacific, make up a small percentage of the introduced species, ranging between 4.2% and 21.6% and being more numerous in the Adriatic and less so in the EMED.Species that are classified as invasive or potentially invasive are 134 in the whole of the Mediterranean: 108 are present in the EMED, 76 in the CMED, 53 in the Adriatic and 64 in the WMED. The WMED hosts most invasive macrophytes, whereas the EMED has the lion’s share in polychaetes, crustaceans, molluscs and fish.


1984 ◽  
Vol 21 (3) ◽  
pp. 385-403 ◽  
Author(s):  
David R. Muerdter ◽  
James P. Kennett ◽  
Robert C. Thunell

Distinctive planktonic foraminiferal assemblages which characterize particular late Quaternary sapropel layers in deep basin sediments from the eastern Mediterranean Sea have been identified using cluster analysis. Three distinct clusters allow for identification and intercore correlation of the nine sapropels deposited during the last 250,000 yr. Cluster 1, representing sapropel layers S1 and S9, exhibits low abundances of Neogloboquadrina dutertrei and high abundances of Globigerinoides ruber; Cluster 2, which groups S3, S5, and S7, contains high abundances of G. ruber, N. dutertrei, and Globigerina bulloides, and Cluster 3, which includes samples from S4, S6, and S8, is marked by extremely abundant N. dutertrei and G. bulloides, and rare G. ruber. Analysis of sedimentation rates in 14 cores reveals the following approximate ages for the sapropel layers: S2 = 52,000 yr B.P.; S3 = 81,000–78,000 yr B.P.; S4 = 100,000–98,000 yr B.P.; and S5 = 125,000–116,000 yr B.P. As previously suggested, sedimentation rates on the Mediterranean Ridge were determined to be relatively constant during the last 127,000 yr. In contrast, basin sedimentation rates have fluctuated markedly from lower rates during interglacial stage 5 to higher rates during the last glacial episode. These glacial/interglacial differences are most pronounced in the northern Ionian Basin, because of increased terrigenous sediment deposition during glacial episodes. Unusually high biogenic sedimentation rates occurred in an arc south of Crete during the deposition of sapropel S5, probably due to higher productivity in this region.


Sign in / Sign up

Export Citation Format

Share Document