scholarly journals Non-linear multiphase flow in hydrophobic porous media

2021 ◽  
Author(s):  
Yihuai Zhang ◽  
Branko Bijeljic ◽  
Martin Blunt

Multiphase flow in porous materials is conventionally described by an empirical extension to Darcy’s law which assumes that the pressure gradient is proportional to flow rate. Through a series of two-phase flow experiments, we demonstrate that even when capillary forces are dominant at the pore scale, there is a non-linear intermittent flow regime with a power-law dependence between pressure gradient and flow rate. Energy balance is used to predict accurately the start of the intermittent regime in hydrophobic porous media. The pore-scale explanation of the behaviour based on the periodic filling of critical flow pathways is confirmed through 3D micron-resolution X-ray imaging.

Author(s):  
Mosayeb Shams ◽  
Kamaljit Singh ◽  
Branko Bijeljic ◽  
Martin J. Blunt

AbstractThis study focuses on direct numerical simulation of imbibition, displacement of the non-wetting phase by the wetting phase, through water-wet carbonate rocks. We simulate multiphase flow in a limestone and compare our results with high-resolution synchrotron X-ray images of displacement previously published in the literature by Singh et al. (Sci Rep 7:5192, 2017). We use the results to interpret the observed displacement events that cannot be described using conventional metrics such as pore-to-throat aspect ratio. We show that the complex geometry of porous media can dictate a curvature balance that prevents snap-off from happening in spite of favourable large aspect ratios. We also show that pinned fluid-fluid-solid contact lines can lead to snap-off of small ganglia on pore walls; we propose that this pinning is caused by sub-resolution roughness on scales of less than a micron. Our numerical results show that even in water-wet porous media, we need to allow pinned contacts in place to reproduce experimental results.


Symmetry ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 364 ◽  
Author(s):  
Huimin Wang ◽  
Jianguo Wang ◽  
Xiaolin Wang ◽  
Andrew Chan

Low-permeability porous medium usually has asymmetric distributions of pore sizes and pore-throat tortuosity, thus has a non-linear flow behavior with an initial pressure gradient observed in experiments. A threshold pressure gradient (TPG) has been proposed as a crucial parameter to describe this non-linear flow behavior. However, the determination of this TPG is still unclear. This study provides multi-scale insights on the TPG in low-permeability porous media. First, a semi-empirical formula of TPG was proposed based on a macroscopic relationship with permeability, water saturation, and pore pressure, and verified by three sets of experimental data. Second, a fractal model of capillary tubes was developed to link this TPG formula with structural parameters of porous media (pore-size distribution fractal dimension and tortuosity fractal dimension), residual water saturation, and capillary pressure. The effect of pore structure complexity on the TPG is explicitly derived. It is found that the effects of water saturation and pore pressure on the TPG follow an exponential function and the TPG is a linear function of yield stress. These effects are also spatially asymmetric. Complex pore structures significantly affect the TPG only in the range of low porosity, but water saturation and yield stress have effects on a wider range of porosity. These results are meaningful to the understanding of non-linear flow mechanism in low-permeability reservoirs.


2019 ◽  
Vol 99 (6) ◽  
Author(s):  
Qingyang Lin ◽  
Branko Bijeljic ◽  
Steffen Berg ◽  
Ronny Pini ◽  
Martin J. Blunt ◽  
...  

2016 ◽  
Vol 52 (3) ◽  
pp. 2194-2205 ◽  
Author(s):  
S. Schlüter ◽  
S. Berg ◽  
M. Rücker ◽  
R. T. Armstrong ◽  
H.-J. Vogel ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document