scholarly journals Creep properties of clastic soil in a reactivated slow-moving landslide in the Three Gorges Reservoir Region, China

2021 ◽  
Author(s):  
shun wang ◽  
Jinge Wang ◽  
Wei Wu ◽  
Deshan Cui

Most slow-moving landslides in the Three Gorges Reservoir (TGR) region of China are characterized by pre-existing shear surfaces. The large deformation within the shear zones usually gives rise to clastic soil formation. The creep properties have large influence on the kinematic feature of landslides. In this paper, we report an in-situ direct shear creep test carried out in the shear zone of a reactivated slow-moving landslide in the TGR region. Correspondingly, some laboratory ring shear creep tests are carried out to interpret the movement pattern of this landslide. The shear zone soil exhibits similar non-attenuating creep responses in both the in-situ direct shear and laboratory ring shear creep tests. At the same stress level, however, the in-situ direct shear creep test yields a larger rate of creep displacement due to shearing along the landslide direction. In the ring shear creep tests, at the prepeak stage, the critical creep stress that triggers creep failure is slightly lower than the peak shear strength but much larger than the residual strength; at the postfailure stage, the critical creep stress of the shear-zone soil is equal to the residual shear strength. The rate-dependent residual shear strength may account for the stepwise movement pattern of the landslide.

Author(s):  
Thi Minh Hue Le ◽  
Gudmund Reidar Eiksund ◽  
Pål Johannes Strøm

For offshore foundations, the residual shear strength is an important soil parameter for the evaluation of installation resistance and axial pile capacity (for jacket foundation). Estimation of residual shear strength can be conducted in a shear box test in the conventional way, or with the introduction of an interface to evaluate the change in residual shear strength under influence of friction between soil and the interface. In addition, the residual effective friction angle can be measured in the ring shear test using the Bromhead apparatus. In this study, the three above-mentioned methods are employed to estimate the values of residual shear strength of two soil units: the Swarte Bank Formation and the Chalk Unit sampled from the Sheringham Shoal offshore wind farms. The Swarte Bank Formation is dominated by heavily over-consolidated stiff clay, while the Chalk Unit is characterized by putty white chalk which behaves in a similar manner to stiff clay if weathered, or to soft rock if unweathered. These soil units are located at the bottom of the soil profile at the Sheringham Shoal wind farm and hence are important in providing axial capacity to the foundation. Samples from the two soil units are tested and compared at different rates of shearing to evaluate the change in axial capacity and installation resistance of the offshore wind turbine foundations under various possible loading and drainage conditions. Comparison is also made between residual shear strength with and without a reconsolidation period to assess the potential for soil set-up and its influence on the soil capacity. The results show that, for both the clay and the chalk, the estimated residual shear strengths are quite similar between the conventional and interface shear tests and tend to increase with increasing shearing rate. This can be attributed to the increasing dominance of the turbulent shearing mode. Relative to the peak shear strength, the values of residual shear strength are approximately 5 to 35% lower in most cases. Reconsolidation for a period of 24 hours appears to have, if any, marginal positive effect on residual shear strength of the two soils in both shear box and interface shear box tests. The residual friction angles derived from the shear box and ring shear tests are comparable and fall in the immediate range of shear strength. The various test results imply that the pile foundations at the Sheringham Shoal would have considerably large axial capacity, assuming that the horizontal stress is similar to the normal stress used in testing. The test data however should be used with caution and combined with piling experience in comparable soils where possible. The study aims to provide a source of reference for design of pile foundations for sites with similar soil conditions.


2019 ◽  
Author(s):  
Baoqin Lian ◽  
Jianbing Peng ◽  
Qiangbing Huang

Abstract. Residual shear strength of soils is an important soil parameter for assessing the stability of landslides. To investigate the effect of the shear rate on the residual shear strength of loessic soils, a series of ring shear tests were carried out on loess from three landslides at two shear rates (0.1 mm/min and 1 mm/min). Naturally drained ring shear tests results showed that the shear displacement to achieve the residual stage for specimens with higher shear rate was greater than that of the lower rate; both the peak and residual friction coefficient became smaller with increase of shear rate for each sample; at two shear rates, the residual friction coefficients for all specimens under the lower normal stress were greater than that under the higher normal stress. The tests results revealed that the difference in the residual friction angle фr at the two shear rates, фr (1)–фr (0.1), under each normal stress level were either positive or negative values. However, the difference фr(1)–фr (0.1) under all normal stresses was negative, which indicates that the residual shear parameters reduced with the increasing of the shear rate in loess area. Such negative shear rate effect on loess could be attributed to a greater ability of clay particles in specimen to restore broken bonds at low shear rates.


1985 ◽  
Vol 22 (1) ◽  
pp. 136-142 ◽  
Author(s):  
F. S. Shuri ◽  
D. D. Driscoll ◽  
S. J. Garner

Two large-scale in situ shear tests were conducted at a damsite in western Canada. The rock at the site is a Cretaceous shale containing a thin clay seam tentatively identified as a bedding-plane shear zone. The material in this seam is significantly weaker than the intact rock and influences the design of certain features of the dam and structures. In order to provide shear strength data for design, two large blocks of shale were sheared along the clay seam. These tests differed from conventional in situ shear tests in two significant ways: the rate of shear displacement was strictly controlled, and pore pressures (both positive and negative) in the shear zone were carefully monitored throughout the test. This note presents the material properties of the shear zone, describes the test equipment and techniques, and discusses the results obtained. Key words: shear strength, in situ testing, pore pressure, shale.


2013 ◽  
Vol 788 ◽  
pp. 615-618
Author(s):  
Yu Jun Lu ◽  
Xin Sheng Ge

In order to provide precise shear strength indexes for a building foundation pit supporting project, the second layer and the third layer of foundation soil were in-situ direct shear test. In-situ direct shear test has its own advantages in projects, and it simulates the real soil condition and reflects practical shear strength. But in-situ shear test requires lots of manpower, material resources and financial resources, so it is not convenient to carry out a lot in practical projects.


2000 ◽  
Vol 37 (1) ◽  
pp. 238-252 ◽  
Author(s):  
K M Lee ◽  
V R Manjunath

This paper describes large-size direct shear tests on soil-geotextile interfaces. Medium-grained, uniform sand and three varieties of woven and nonwoven geotextiles manufactured with different techniques are utilized to investigate the soil-geotextile interface friction coefficient (f*). Tests were carried out using an apparatus specifically designed for interface testing, and results were compared with those obtained from the conventional direct shear equipment. The results obtained from this study indicated that the determination of peak interface behaviour was not a trivial matter, as the results were significantly affected by the boundary and testing conditions of the testing apparatus. The residual interface behaviour was investigated by multiple reversal direct shear tests. Since the use of multiple reversal direct shear tests on the proposed apparatus can impose a high degree of shear displacement and stress uniformity on the soil-geotextile interface, a more reliable definition of the residual interface friction can be obtained. The results indicate that woven-nonwoven geotextile interfaces exhibit a significant postpeak strength loss after a number of shear cycles. In the case of woven geotextiles, this is attributed to the opening up of the filaments associated with the physical damage caused during shear, whereas for nonwoven geotextiles it is due to the pulling out or tearing of filaments.Key words: geotextile, direct shear test, interface friction coefficient, peak shear strength, residual shear strength.


2013 ◽  
Vol 842 ◽  
pp. 782-787 ◽  
Author(s):  
Feng Zhu ◽  
Zhong Yuan Duan ◽  
Zhen Yu Wu ◽  
Yu Qi Wu ◽  
Tian Long Li ◽  
...  

The creep characteristics of red layer sliding soil under the condition of different vertical loads and water contents were studied through a series of direct shear creep tests. Tests results showed that the water infiltrated to the sliding zone along the fissure of red layer sliding belt due to the crush of red layer sliding rock, leading to softening of sliding zone and acceleration of shear creep. When the shear stress reached the limit of long-term shear strength, sliding soil was broken suddenly with small vertical loads (50 kPa and 100kPa), while the sliding soil presented as a constant acceleration creep with enough vertical loads (200 kPa and 300 kPa). The inflection point in shear stress-shear displacement isochronous curve corresponded to the long-term strength of the soil.


2006 ◽  
Vol 43 (6) ◽  
pp. 618-625 ◽  
Author(s):  
Giovanni Gullà ◽  
Maria Clorinda Mandaglio ◽  
Nicola Moraci

In situ, seasonal changes expose soils to frequent wetting–drying–freezing–thawing cycles. Such processes can favour and trigger shallow instabilities controlled by the weathering process. This paper presents an experimental study carried out to investigate the effects of the weathering process, caused by the wetting–drying–freezing–thawing cycles, on the compressibility and shear strength of a natural clay. Several specimens were trimmed from block samples of overconsolidated clays taken from a slope in south Calabria, Italy. Specimens were subjected to wetting–drying–freezing–thawing cycles of different durations and then tested with standard equipment (oedometer and direct shear). Test results show that the wetting–drying–freezing–thawing cycles caused a change in the initial microstructure that produced a decrease in the compression index and an increase in the swelling index. Moreover, the direct shear test results show a decrease in the peak shear strength and demonstrate that a larger reduction occurs in the first month of weathering cycles. The intense cycles performed in the laboratory produced a decay of compressibility and a shear strength approaching reconstituted values. The conclusions are important when choosing the shear strength parameters required when studying shallow landsliding in clay slopes.Key words: weathered clay, structure, cycle of degradation, shallow instability.


Sign in / Sign up

Export Citation Format

Share Document