residual shear strength
Recently Published Documents


TOTAL DOCUMENTS

156
(FIVE YEARS 40)

H-INDEX

20
(FIVE YEARS 1)

2021 ◽  
Vol 8 (1-2) ◽  
pp. 39-47
Author(s):  
Anja Bek ◽  
Goran Jeftić ◽  
Stjepan Strelec ◽  
Jasmin Jug

One of the most important mechanical properties is shear strength. It is conditioned by the value of the maximum shear stress that the soil can withstand before failure. Exceeding the shear strength causes one particle to slide next to another, causing the failure of soil. The shear strength of the soil for effective stresses is1 a combination of drained strength parameters: internal friction angle (φ) and cohesion (c) defined by the Mohr-Coulomb failure criterion. It is determined “in situ” and by laboratory experiments. Direct shear is the oldest and the simplest laboratory experiment to determine the shear strength of the soil. The first phase of experiment is specimen consolidation under specific vertical stress, and in the second phase specimens are sheared at a given shear rate, depending on the consolidation properties of the soil. Cohesionless soils are sheared at up to 100 times higher shear rate compared to cohesive soils. Shear rate and drainage conditions affect the magnitude of soil strength parameters. The paper is based on the comparison and demonstration of the influence of different shear rates on the peak and residual shear strength in the direct shear device. The tests were performed on two samples of low plasticity clay (CL) and one sample of high plasticity clay (CH).


Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6671
Author(s):  
Wei Hou ◽  
Xinghua Dai ◽  
Zheyu Yang ◽  
Hanhuang Huang ◽  
Xiaoli Wang ◽  
...  

This paper investigates the seismic behavior of novel stone masonry joints using ductile engineered cementitious composite (ECC) as a substitute for ordinary mortar. Ten stone masonry joints with different types of mortar/ECC were tested under axial and cyclic loads. The filling materials of mortar joints tested included ordinary mortar, polymer mortar, ECC, and composite mortar with two combination proportions of ECC and ordinary mortar. The test results indicated that ECC specimens exhibited a more stable hysteretic response as well as an improvement in strength, deformation, energy dissipation, and strength degradation. The ECC mortar joints maintained integrity during the entire loading process due to the “self-confinement” effect of ECC. A partial substitution of mortar with ECC could provide effective reinforcement and confinement to prevent mortar failure and peeling, thereby allowing such specimens to approach the seismic performance of ECC specimens. Based on the trend of shear strength variations, a corresponding failure process is defined for ECC/mortar joints under cyclic and axial compressive loads, including four distinct stages: linear elastic, crack-developing stage, interface debonding, and friction sliding. New equations are proposed for predicting the shear strength and residual shear strength of the ECC/mortar joints on the basis of the test results, which are validated in the composite mortar specimens.


2021 ◽  
Vol 11 (16) ◽  
pp. 7667
Author(s):  
Sang-Hyo Kim ◽  
Oneil Han ◽  
Suro Yoon ◽  
Tuguldur Boldoo

The steel–concrete composite structures consist of two different material parts, which are connected with reliable shear connectors to enable the combined action of the steel and concrete members. The shear connectors may experience either one-directional repeated cyclic loadings or fully reversed cyclic loadings depending on the structural functions and acting loadings. It is essential for structural engineers to estimate the residual shear strength of the shear connectors after action of repeated loads. The characteristics of deteriorating shear capacities of Y-type perfobond rib shear connectors under repeated loads were investigated to estimate the energy dissipating capacity as well as the residual shear strength after repeated loads. To perform the repeated load experiments four different intensities of repeated loads were selected based on the monotonic push-out tests which were performed with 15 specimens with five different design variables. The selected load levels range from 35% to 65% of the representative ultimate shear strength under the monotonic load. In total, 12 specimens were tested under five different repeated load types which were applied to observe the energy dissipating characteristics under various load intensities. It was found that the dissipated energy per cycle becomes stable and converges with the increasing number of cycles. A design formula to estimate the residual shear strength after the repeated loads was proposed, which is based on the residual shear strength factor and the nominal ultimate shear strength of the fresh Y-type perfobond rib shear connectors. The design residual shear strength was computed from the number of repeated loads and the energy dissipation amount per cycle. The reduction factor for the design residual shear strength was also proposed considering the target reliability level. The various reduction factors for the design residual shear strength were derived based on the probabilistic characteristics of the residual shear strength as well as the energy dissipation due to repeated loads.


2021 ◽  
Vol 13 (16) ◽  
pp. 9315
Author(s):  
Yuantian Sun ◽  
Guichen Li ◽  
Junfei Zhang ◽  
Junbo Sun ◽  
Jiandong Huang ◽  
...  

Pre-grouting as an effective means for improving the stability of roadways can reduce maintenance costs and maintain safety in complex mining conditions. In the Guobei coal mine in China, a cement pre-grouting technique was adopted to enhance the overall strength of soft coal mass and provide sufficient support for the roadway. However, there are very limited studies about the effect of grouting on the overall strength of coal in the laboratory. In this paper, based on the field observation of a coal-grout structure after grouting, a series of direct shear tests were conducted on coal and grouted coal specimens to quantitatively evaluate the quality improvement of grouted coal mass. The results showed that the peak and residual shear strength, cohesion, friction angle and the shear stiffness of grouted coal were significantly improved with the increase of the diameter of grout column. Linear regression models were established for predicting these mechanical parameters. In addition, three failure models associated with coal and grouted coal specimens were revealed. According to microstructure and macroscopic failure performance of specimens, the application of the proposed models and some methods for further improving the stability of grouted coal mass were suggested. The research can provide the basic evaluation and guideline for the parametric design of cement pre-grouting applications in soft coal mass.


PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0255046
Author(s):  
Ming Zhang ◽  
Jun Han ◽  
Chen Cao ◽  
Shuangwen Ma

Pull-out testing was carried out to evaluate the effects of shape, size and concentration of steel aggregates on anchorage performance. Steel grit with particle sizes of 1.5, 2.0, and 2.8 mm and steel shot diameters of 1.4, 2.0, and 2.5 mm were used as steel aggregates and were added into the resin anchoring agent. For each kind of steel aggregate, either 30, 40 or 50 aggregates were used to evaluate the effects of different steel aggregate densities. Anchorage specimens were prepared using ϕ20mm rebar bolts and steel sleeves. Compressive and shear strengths of resin containing steel aggregates, the pullout curve, and the circumferential strain of the sleeves were measured, and the energy consumption was calculated. Results show that compressive and shear strengths of resin containing steel grit and steel shot are increased by 8.4%-17.0% compared to pure resin. For the aggregate numbers of 30, 40 and 50, the anchoring force is increased by 7.9%, 7.5% and 6.5%; energy consumption is increased by 19.2%, 15.0% and 18.6%; and the circumferential strain of the specimen is increased by 28.4%, 25.1% and 39.5%, respectively. The effect of aggregate size on anchoring performance is significant; that is, the aggregate sizes of 1.4~1.5, 2.0 and 2.5~2.8 mm increase the anchoring force, energy consumption and sleeve circumferential strain by 8.5%, 4.6% and 8.7%, 16.0%, 8.4% and 28.4%, and 17.9%, 23.3% and 51.9%, respectively. The relationships of the anchoring force, energy consumption, and circumferential strain with steel aggregate quantity and size are formulated. Results show that the addition of steel aggregates increases the compressive and shear strengths of the resin, and steel aggregate quantity and size have significant impact on anchoring performance. This paper provides the basis for optimization of resin anchoring agents used in the mining industry. The impact of anchoring agent shear strength and residual shear strength on the anchoring effect were also discussed based on the failure analysis of the anchoring section.


Sign in / Sign up

Export Citation Format

Share Document