Application of In Situ Direct Shear Test for Obtaining Soil Shear Strength Indexes in Projects

2013 ◽  
Vol 788 ◽  
pp. 615-618
Author(s):  
Yu Jun Lu ◽  
Xin Sheng Ge

In order to provide precise shear strength indexes for a building foundation pit supporting project, the second layer and the third layer of foundation soil were in-situ direct shear test. In-situ direct shear test has its own advantages in projects, and it simulates the real soil condition and reflects practical shear strength. But in-situ shear test requires lots of manpower, material resources and financial resources, so it is not convenient to carry out a lot in practical projects.

2006 ◽  
Vol 43 (6) ◽  
pp. 618-625 ◽  
Author(s):  
Giovanni Gullà ◽  
Maria Clorinda Mandaglio ◽  
Nicola Moraci

In situ, seasonal changes expose soils to frequent wetting–drying–freezing–thawing cycles. Such processes can favour and trigger shallow instabilities controlled by the weathering process. This paper presents an experimental study carried out to investigate the effects of the weathering process, caused by the wetting–drying–freezing–thawing cycles, on the compressibility and shear strength of a natural clay. Several specimens were trimmed from block samples of overconsolidated clays taken from a slope in south Calabria, Italy. Specimens were subjected to wetting–drying–freezing–thawing cycles of different durations and then tested with standard equipment (oedometer and direct shear). Test results show that the wetting–drying–freezing–thawing cycles caused a change in the initial microstructure that produced a decrease in the compression index and an increase in the swelling index. Moreover, the direct shear test results show a decrease in the peak shear strength and demonstrate that a larger reduction occurs in the first month of weathering cycles. The intense cycles performed in the laboratory produced a decay of compressibility and a shear strength approaching reconstituted values. The conclusions are important when choosing the shear strength parameters required when studying shallow landsliding in clay slopes.Key words: weathered clay, structure, cycle of degradation, shallow instability.


2008 ◽  
Vol 31 (3) ◽  
pp. 101152 ◽  
Author(s):  
L. D. Suits ◽  
T. C. Sheahan ◽  
A. Fakhimi ◽  
K. Boakye ◽  
D. J. Sperling ◽  
...  

2020 ◽  
Vol 18 (7) ◽  
pp. 717-733 ◽  
Author(s):  
Mohsen Keramati ◽  
Masoud Shahedifar ◽  
Mohammad Hosein Aminfar ◽  
Hasan Alagipuor

2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Yanhui Cheng ◽  
Weijun Yang ◽  
Dongliang He

Structural plane is a key factor in controlling the stability of rock mass engineering. To study the influence of structural plane microscopic parameters on direct shear strength, this paper established the direct shear mechanical model of the structural plane by using the discrete element code PFC2D. From the mesoscopic perspective, the research on the direct shear test for structural plane has been conducted. The bonding strength and friction coefficient of the structural plane are investigated, and the effect of mesoscopic parameters on the shear mechanical behavior of the structural plane has been analyzed. The results show that the internal friction angle φ of the structural plane decreases with the increase of particle contact stiffness ratio. However, the change range of cohesion is small. The internal friction angle decreases first and then increases with the increase of parallel bond stiffness ratio. The influence of particle contact modulus EC on cohesion c is relatively small. The internal friction angle obtained by the direct shear test is larger than that obtained by the triaxial compression test. Parallel bond elastic modulus has a stronger impact on friction angle φ than that on cohesion c. Under the same normal stress conditions, the shear strength of the specimens increases with particle size. The shear strength of the specimen gradually decreases with the increase of the particle size ratio.


2013 ◽  
Vol 353-356 ◽  
pp. 735-739
Author(s):  
Xiao Ming Zhang ◽  
Shu Wen Ding ◽  
Shuang Xi Li

Development of slope disintegration is close to soil mechanic characteristics such as shear strength indices. Soil grain diameter and water content were tested. Soil direct shear test was conducted to analyze the relationship between shear strength indices and the influencing factors. The experimental data indicate that clay content and the range affect soil cohesion value and the scope. Soil cohesion increases with bulk density before 1.6g/cm3. But it decreases when the bulk after that. The results could provide a scientific basis for control of slope disintegration.


2021 ◽  
Vol 3 (2) ◽  
pp. 74-80
Author(s):  
Talal Masoud

The results of the direct shear test on Jerash expansive soil show the effect of the initial water content on the cohesion (c) and on the angel of internal friction ( ) [shear strength parameters].it show that, as the initial water increase, the cohesion (c) of Jerash expansive soil also increase up to the shrinkage limit, after that increase of water even small amount, decrease the cohesion of the soil. On the other hand, the results of direct shear test show also  that as the water content increase, the angle of internal friction ( )remain unchanged up to shrinkage limit , any increase of water cause a large decrease on the angle of internal friction of Jerash expansive soil.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Ruiqian Wu ◽  
Youzhi Tang ◽  
Shaohe Li ◽  
Wei Wang ◽  
Ping Jiang ◽  
...  

In order to probe into one simplified method to predict the shear strength of Shaoxing unsaturated silty clay, the test method combining unsaturated soil consolidation instrument and conventional direct shear instrument is used to study the shear strength, and the method is compared and verified with the results of equal suction direct shear test. The research results show that the soil water characteristic curve fitted by the measured data points and VG model has obvious stage characteristics in the range of 0~38 kPa, 38~910 kPa, and 910~10000 kPa. The shear strength of unsaturated soil measured by consolidation meter combined with conventional direct shear test is in good agreement with that measured by equal suction direct shear test in the range of 0~500 kPa. The results show that the shear strength, total cohesion, and effective internal friction angle of soil increase slightly with the increase of matric suction in the range of 0~38 kPa. When the matric suction increases from 38 kPa to 500 kPa, the shear strength and total cohesion force of the soil have similar stage characteristics with the SWCC, which first increases and then tends to be stable, while the effective internal friction angle changes slightly. Finally, taking the air-entry value as the demarcation point, an improved model of unsaturated shear strength is proposed by analyzing the error value. Compared with the measured value, the absolute value of relative error is basically kept in the range of 5%~10%, which is close to the measured value.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Zhuoling He ◽  
Junyun Zhang ◽  
Tao Sun

With the steady development of the development of the western region in China, the construction of mountain highways has developed rapidly, and the soil-rock mixed filler, as an excellent filler, is widely used in the subgrade filling of mountain highways. Unlike ordinary fine-grained soil, the source of the soil-rock mixtures (S-RMs) is not unique, and the particle size difference is large and the water content is not uniform, resulting in very complicated mechanical properties. But the current highway embankment codes are still mainly established on the fine-grained soil. It is not fully applicable to soil-rock filled embankment. Based on soil-rock filled embankment engineering practice, this research uses a large-scale direct shear test to research the mechanical characteristics of the S-RMs with different maximum particle diameters. According to the large-scale direct shear test of S-RMs with different maximum particle diameters, the shear displacement vs shear stress curve, shear dilation, and strength characteristics with maximum particle diameter were analyzed. Results demonstrate that whether secondary hardening occurs mainly depends on the normal stress and the maximum particle diameter of the filler. At different maximum particle diameters, the horizontal displacement vs vertical displacement curves of the S-RMs can be roughly divided into continuous shearing and beginning of shearing and quick dilation. And the shear strength increases with the increase of the maximum particle diameter. Moreover, the cohesion decreases first and then increases with the increase of the maximum particle diameter, and the internal friction angle increases with the increase of the maximum particle diameter. Therefore, some RBs with large particle diameter added to filler can effectively improve the shear strength of the S-RMs, which may be valuable for realistic engineering.


Sign in / Sign up

Export Citation Format

Share Document