scholarly journals Development of a Constant Volume Combustion Chamber for Material Synthesis

Author(s):  
Mohammadrasool Morovatiyan ◽  
Martia Shahsavan ◽  
John Hunter Mack

A constant volume combustion chamber (CVCC) was constructed to enable material synthesis procedures that are sensitive to temperature, pressure, and ambient species concentrations. Material synthesis processes require specific operating conditions in order to carry out the desired chemical reactions and property transformations, including the creation of paper-templated metals and nanoparticles. The 1.13 liter combustion chamber includes a test stand for conducting the material synthesis experiments. A premixed fuel-air mixture is ignited at a desired equivalence ratio in order to produce the required synthesis conditions. In comparison to furnaces and ovens, this approach provides greater flexibility for materials synthesis procedures. Computational modeling using adaptive mesh refinement, alongside preliminary experimental testing results, confirms that the CVCC can provide the appropriate conditions to synthesize paper-templated metals. The approach demonstrates that the CVCC can be a viable alternative to a furnace for use in materials synthesis applications.

Energies ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 5084
Author(s):  
Kwonse Kim ◽  
Jaeyoung Han ◽  
Seokyeon Im

The characteristics of spark ignition with a constant volume combustion chamber (CVCC) is evaluated for the efficiency of capacitive-assisted ignition (CAI), such as spark kernel and flame growth. The conventional spark method and matching effect of high voltage (MEHV) method are evaluated to compare the spark growth distribution characteristics. To do this study, a plasma system is used and is consisted of input power, three capacitors, a transformer, high voltage cable, J-type of a spark plug, diode, and CVCC. The experiment is conducted under various operating conditions, such as 1 bar, 295 K of initial temperature, 50, 100, 150 V of ignition box, 400 V of MEHV, 0.7 ms of spark duration, and 0 kΩ of plug resistor. The results show that the spark growth at the initial voltages of 100 V and 150 V has the same characteristic, and the surface area is increased by 13 mm2 at 150 V compared to 100 V because capacitance energy stored in three capacitors is efficiently induced by the effect of dielectric breakdown and electron collision. Consequently, the spark growth of MEVH is widely distributed atmospheric more than the conventional spark, and the internal temperature of the spark kernel could be presumed to change the non-thermal plasma to thermal plasma by MEHV.


Sign in / Sign up

Export Citation Format

Share Document