scholarly journals Analytical 1D transfer functions for layered soils

2021 ◽  
Author(s):  
Joaquin Garcia-Suarez ◽  
Domniki Asimaki

Transfer functions are constantly used in both Seismology and Geotechnical Earthquake Engineering to relate seismic displacement at different depths within strata. In the context of Diffusive Theory, they also appear in the expression of the imaginary part of 1D Green's functions. In spite of its remarkable importance, their mathematical structure is not fully understood yet, except in the simplest cases of two or three layers at most. This incomplete understanding, in particular as to the effect of increasing number of layers, hinders progress in some areas, as researchers have to resort to expensive and less conclusive numerical parametric studies. This text presents the general form of transfer functions for any number of layers, overcoming the above issues. Owing to the formal connection between seismic wave propagation and other phenomena that, in essence, represent different instances of wave propagation in a linear-elastic medium, one can extend the results derived elsewhere [Garcia-Suarez, Joaquin. 2021. “Trace Spectrum of 1D Transfer Matrices for Wave Propagation in Layered Media.” engrXiv. June 24. doi:10.31224/osf.io/ygt8z] in the context of longitudinal wave propagation in modular rods to seismic response of stratified sites. The knowledge of the general closed-form expression of the transfer functions allows to analytically characterize the long-wavelength asymptotics of the horizontal-to-vertical spectral ratio for any number of layers.

2020 ◽  
Vol 110 (3) ◽  
pp. 1134-1148
Author(s):  
Lei Zhang ◽  
Jin-Ting Wang ◽  
Yan-Jie Xu ◽  
Chun-Hui He ◽  
Chu-Han Zhang

ABSTRACT This article aims at numerically simulating the 3D seismic wave propagation from rupture to structures. A two-step method coupling the spectral element method (SEM) and the finite-element method (FEM) is proposed based on the domain reduction method to simultaneously simulate the seismic wave propagation in large-scale regions and analyze the dynamic behavior of structures in local sites. First, the concept of the proposed two-step method is illustrated. In the first step, the seismic wave propagation of the entire area, involving the source, propagation media, and local region of interest, is simulated using the SEM. In the second step, the dynamic analysis of structure-foundation system with local geological and topographical conditions is implemented using the FEM in a fine mesh based on the results in the first step. Subsequently, the FEM grid size is evaluated to match the SEM results, and the proposed SEM–FEM procedure is verified using both point-source and finite-fault model in a layered flat model. Finally, two analysis examples are presented using the proposed procedure. The analysis results show that the proposed SEM–FEM procedure can well consider the effects of local geological and topographical conditions on synthesized ground motions and can be applied to the rupture-to-structure simulations in earthquake engineering.


2010 ◽  
Vol 41 (1) ◽  
pp. 1-8 ◽  
Author(s):  
Weijia Sun ◽  
Binzhong Zhou ◽  
Peter Hatherly ◽  
Li-Yun Fu

Sign in / Sign up

Export Citation Format

Share Document