scholarly journals PERBAIKAN KEKUATAN DAN DAKTILITAS KOLOM BETON BERTULANG YANG MENDAPAT BEBAN GEMPA MENGGUNAKAN GLASS FIBER REINFORCED POLYMER

2017 ◽  
Author(s):  
Parmo

Abstract: Repairing the Strength and Ductility of Reinforced Concrete Column That Got Earthquake using Glass Fiber Reinforced Polymer. This study aims to identify the additional strength and ductility of reinforced concrete columns after being retro- fitted using glass fiber reinforced polymer (GFRP) and got the brunt of the earthquake. This study uses two objects tested columns, which are being tested for three times. Each column size is 350 x 350 x 1100 mm with f'c = 20.34 MPa and fy = 549.94 MPa. The testing is performed by giving a constant axial load of 748 kN and cyclic lateral load using control displacement method in order to simulate the brunt of earthquake. The results show an increase in lateral capacity of column by 43.96%. Retrofitting the column with GFRP has a ductile property, which is shown by the increase of the displacement ductility by 129.14% and curvature ductility by 118.27%.

2016 ◽  
Vol 857 ◽  
pp. 421-425
Author(s):  
Saif M. Thabet ◽  
S.A. Osman

This paper presents an investigation into the flexural behaviour of reinforced concrete beam with opening reinforced with two different materials i.e., steel and Glass Fiber Reinforced Polymer (GFRP). Comparison study between the two different materials were carried out and presented in this study through non-linear Finite Element Method (FEM) using the commercial ABAQUS 6.10 software package. The performance of the opening beam reinforced with GFRP is influenced by several key parameters. Simulation analyses were carried out to determine the behavior of beam with opening subjected to monotonic loading. The main parameters considered in this study are size of opening and reinforcement diameter. The results show that GFRP give 23%-29% more ductility than steel reinforcement. The result also shows when the size of opening change from 200mm to 150mm or from 150mm to 100mm the ultimate load capacity increase by 15%. In general, good agreement between the Finite Element (FE) simulation and the available experimental result has been obtained.


2017 ◽  
Author(s):  
Parmo

Wheres Indonesia is a highly active tectonic zone that is prone to earthquakes. Important issue following the earthquake was retrofit structures to improvement strength and ductility structure. With the advancement of technology today has developed new innovations such as the use of material GFRP (Glass Fiber Reinforced Polymer) for external confinement structure. From the results obtained by the experimental of load capacity increased by 20% for C-2 (retrofit beam with GFRP strengthened 1 layer) compared B-1 (original beam). Retrofit beam with GFRP is added ductility as shown by the increase in displacement ductility 4% each for B-1 and B-2.


Sign in / Sign up

Export Citation Format

Share Document