scholarly journals Tri-Dirichlet-Type Problems with Polynomial Data in a Unit Sphere In $ R^3$

2017 ◽  
Author(s):  
Agah D. Garnadi

We studied Tri-Dirichlet boundary value problem of TriLaplace equation. The problem is reformulated as a systems of Laplace-Poisson equation with Dirichlet problems. We utilize an exact algorithms for solving Laplace equations with Dirichlet conditions with polynomial functions data. The algorithm requires differentiation of the boundary function, but no integration.

2018 ◽  
Author(s):  
Agah D. Garnadi ◽  
Ikhsan Maulidi

We studied simply supported boundary value problem of Biharmonic equation. The problem is reformulated as a systems of Laplace-Poisson equation with Dirichlet problems. We utilize an exact algorithms for solving Laplace equations with Dirichlet conditions with polynomial functions data. The algorithm requires only differentiation of the boundary function, but no integration


2017 ◽  
Vol 13 (1) ◽  
pp. 51
Author(s):  
Ikhsan Maulidi ◽  
Agah D Garnadi

We studied Biharmonic boundary value problem on annulus with polynomial data. We utilize an exact algorithms for solving Laplace equations with Dirichlet conditions with polynomial functions data. The algorithm requires differentiation of the boundary function, but no integration.


2017 ◽  
Vol 13 (1) ◽  
pp. 51
Author(s):  
Ikhsan Maulidi ◽  
Agah D Garnadi

We studied Biharmonic boundary value problem on annulus with polynomial data. We utilize an exact algorithms for solving Laplace equations with Dirichlet conditions with polynomial functions data. The algorithm requires differentiation of the boundary function, but no integration.


2018 ◽  
Author(s):  
Agah D. Garnadi

We studied simply supported polynomial data of boundary value problem of Polyharmonic equation. The problem is reformulated as a systems of Laplace-Poisson equation with Polynomial Dirichlet problems. We utilize an exact algorithms for solving Laplace equations with Dirichlet conditions with polynomial data. The algorithm requires differentiation of the boundary function, but no integration.


2018 ◽  
Author(s):  
Agah D. Garnadi

We studied simply supported boundary value problem of Biharmonic equation in the unit ball of $R^n, n \geq 3,$ with polynomial data. The problem is restated as a pair of Laplace and Poisson equations with polynomial Dirichlet problems. We utilize an exact algorithms for solving Laplace equations with Dirichlet boundary conditions with polynomial functions data. The algorithm requires only differentiation of the boundary data, but no integration


2018 ◽  
Vol 15 ◽  
pp. 8098-8119
Author(s):  
Johan Ceballos

This paper reviews and summarizes the relevant literature on Dirichlet problems for monogenic functions on classic Clifford Algebras and the Clifford algebras depending on parameters on. Furthermore, our aim is to explore the properties when extending the problem to and, illustrating it using the concept of fibres. To do so, we explore ways in which the Dirichlet problem can be written in matrix form, using the elements of a Clifford's base. We introduce an algorithm for finding explicit expressions for monogenic functions for Dirichlet problems using matrices in Finally, we illustrate how to solve an initial value problem related to a fibre.


2009 ◽  
Vol 42 (1) ◽  
Author(s):  
Marek Galewski

AbstractWe consider the Dirichlet boundary value problem for higher order O.D.E. with nonlinearity being the sum of a derivative of a convex and of a concave function in case when no growth condition is imposed on the concave part.


Sign in / Sign up

Export Citation Format

Share Document