scholarly journals File Concealment using the Paillier Method and RGB Intensity Based Steganography

2018 ◽  
Author(s):  
Andysah Putera Utama Siahaan ◽  
Solly Aryza

Steganography is related to the addition of information to a given medium (referred to as cover media) without making visible changes to it. Most of the proposed steganography techniques cannot be applied to store large-scale data. In the new technique for RGB image steganography, color intensity (R-G-B) is used to determine the number of bits you want to store in each pixel. Meanwhile, to improve the security of stored confidential files, cryptographic methods will be applied. The Paillier cryptosystem invented by Pascal Paillier in 1999 is a probabilistic asymmetric algorithm for public key cryptography. The security of the Paillier algorithm depends on the problem of calculating the n-residue class that is believed to be very difficult to compute. This problem is known as the Composite Residuosity (CR) and is the basis of this Paillier cryptosystem. The software created can save secret files into a digital image into a stego image. The secret file can be extracted out through the extraction process.

2009 ◽  
Vol 28 (11) ◽  
pp. 2737-2740
Author(s):  
Xiao ZHANG ◽  
Shan WANG ◽  
Na LIAN

2016 ◽  
Author(s):  
John W. Williams ◽  
◽  
Simon Goring ◽  
Eric Grimm ◽  
Jason McLachlan

2008 ◽  
Vol 9 (10) ◽  
pp. 1373-1381 ◽  
Author(s):  
Ding-yin Xia ◽  
Fei Wu ◽  
Xu-qing Zhang ◽  
Yue-ting Zhuang

2021 ◽  
Vol 77 (2) ◽  
pp. 98-108
Author(s):  
R. M. Churchill ◽  
C. S. Chang ◽  
J. Choi ◽  
J. Wong ◽  
S. Klasky ◽  
...  

Author(s):  
Krzysztof Jurczuk ◽  
Marcin Czajkowski ◽  
Marek Kretowski

AbstractThis paper concerns the evolutionary induction of decision trees (DT) for large-scale data. Such a global approach is one of the alternatives to the top-down inducers. It searches for the tree structure and tests simultaneously and thus gives improvements in the prediction and size of resulting classifiers in many situations. However, it is the population-based and iterative approach that can be too computationally demanding to apply for big data mining directly. The paper demonstrates that this barrier can be overcome by smart distributed/parallel processing. Moreover, we ask the question whether the global approach can truly compete with the greedy systems for large-scale data. For this purpose, we propose a novel multi-GPU approach. It incorporates the knowledge of global DT induction and evolutionary algorithm parallelization together with efficient utilization of memory and computing GPU’s resources. The searches for the tree structure and tests are performed simultaneously on a CPU, while the fitness calculations are delegated to GPUs. Data-parallel decomposition strategy and CUDA framework are applied. Experimental validation is performed on both artificial and real-life datasets. In both cases, the obtained acceleration is very satisfactory. The solution is able to process even billions of instances in a few hours on a single workstation equipped with 4 GPUs. The impact of data characteristics (size and dimension) on convergence and speedup of the evolutionary search is also shown. When the number of GPUs grows, nearly linear scalability is observed what suggests that data size boundaries for evolutionary DT mining are fading.


Author(s):  
Xingyi Wang ◽  
Yu Li ◽  
Yiquan Chen ◽  
Shiwen Wang ◽  
Yin Du ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document