scholarly journals Blindsight.

2021 ◽  
Author(s):  
James Danckert ◽  
Christopher Lee Striemer ◽  
Yves Rossetti

For over a century research has demonstrated that damage to primary visual cortex does not eliminate all capacity for visual processing in the brain. From Riddoch’s (1917) early demonstration of intact motion processing for blind field stimuli, to the iconic work of Weiskrantz and colleagues (1974) showing reliable spatial localization, it is clear that secondary visual pathways that bypass V1 carry information to the visual brain that in turn influences behavior. In this chapter we briefly outline the history and phenomena associated with blindsight, before discussing the nature of the secondary visual pathways that support residual visual processing in the absence of V1. We finish with some speculation as to the functional characteristics of these secondary pathways.

2016 ◽  
Author(s):  
Dylan R Muir ◽  
Patricia Molina-Luna ◽  
Morgane M Roth ◽  
Fritjof Helmchen ◽  
Björn M Kampa

AbstractLocal excitatory connections in mouse primary visual cortex (V1) are stronger and more prevalent between neurons that share similar functional response features. However, the details of how functional rules for local connectivity shape neuronal responses in V1 remain unknown. We hypothesised that complex responses to visual stimuli may arise as a consequence of rules for selective excitatory connectivity within the local network in the superficial layers of mouse V1. In mouse V1 many neurons respond to overlapping grating stimuli (plaid stimuli) with highly selective and facilitatory responses, which are not simply predicted by responses to single gratings presented alone. This complexity is surprising, since excitatory neurons in V1 are considered to be mainly tuned to single preferred orientations. Here we examined the consequences for visual processing of two alternative connectivity schemes: in the first case, local connections are aligned with visual properties inherited from feedforward input (a ‘like-to-like’ scheme specifically connecting neurons that share similar preferred orientations); in the second case, local connections group neurons into excitatory subnetworks that combine and amplify multiple feedforward visual properties (a ‘feature binding’ scheme). By comparing predictions from large scale computational models with in vivo recordings of visual representations in mouse V1, we found that responses to plaid stimuli were best explained by a assuming ‘feature binding’ connectivity. Unlike under the ‘like-to-like’ scheme, selective amplification within feature-binding excitatory subnetworks replicated experimentally observed facilitatory responses to plaid stimuli; explained selective plaid responses not predicted by grating selectivity; and was consistent with broad anatomical selectivity observed in mouse V1. Our results show that visual feature binding can occur through local recurrent mechanisms without requiring feedforward convergence, and that such a mechanism is consistent with visual responses and cortical anatomy in mouse V1.Author summaryThe brain is a highly complex structure, with abundant connectivity between nearby neurons in the neocortex, the outermost and evolutionarily most recent part of the brain. Although the network architecture of the neocortex can appear disordered, connections between neurons seem to follow certain rules. These rules most likely determine how information flows through the neural circuits of the brain, but the relationship between particular connectivity rules and the function of the cortical network is not known. We built models of visual cortex in the mouse, assuming distinct rules for connectivity, and examined how the various rules changed the way the models responded to visual stimuli. We also recorded responses to visual stimuli of populations of neurons in anaesthetised mice, and compared these responses with our model predictions. We found that connections in neocortex probably follow a connectivity rule that groups together neurons that differ in simple visual properties, to build more complex representations of visual stimuli. This finding is surprising because primary visual cortex is assumed to support mainly simple visual representations. We show that including specific rules for non-random connectivity in cortical models, and precisely measuring those rules in cortical tissue, is essential to understanding how information is processed by the brain.


2019 ◽  
Vol 5 (1) ◽  
pp. 317-339 ◽  
Author(s):  
Emmanouil Froudarakis ◽  
Paul G. Fahey ◽  
Jacob Reimer ◽  
Stelios M. Smirnakis ◽  
Edward J. Tehovnik ◽  
...  

In this article, we review the anatomical inputs and outputs to the mouse primary visual cortex, area V1. Our survey of data from the Allen Institute Mouse Connectivity project indicates that mouse V1 is highly interconnected with both cortical and subcortical brain areas. This pattern of innervation allows for computations that depend on the state of the animal and on behavioral goals, which contrasts with simple feedforward, hierarchical models of visual processing. Thus, to have an accurate description of the function of V1 during mouse behavior, its involvement with the rest of the brain circuitry has to be considered. Finally, it remains an open question whether the primary visual cortex of higher mammals displays the same degree of sensorimotor integration in the early visual system.


2009 ◽  
Vol 106 (37) ◽  
pp. 15996-16001 ◽  
Author(s):  
Christopher L. Striemer ◽  
Craig S. Chapman ◽  
Melvyn A. Goodale

When we reach toward objects, we easily avoid potential obstacles located in the workspace. Previous studies suggest that obstacle avoidance relies on mechanisms in the dorsal visual stream in the posterior parietal cortex. One fundamental question that remains unanswered is where the visual inputs to these dorsal-stream mechanisms are coming from. Here, we provide compelling evidence that these mechanisms can operate in “real-time” without direct input from primary visual cortex (V1). In our first experiment, we used a reaching task to demonstrate that an individual with a dense left visual field hemianopia after damage to V1 remained strikingly sensitive to the position of unseen static obstacles placed in his blind field. Importantly, in a second experiment, we showed that his sensitivity to the same obstacles in his blind field was abolished when a short 2-s delay (without vision) was introduced before reach onset. These findings have far-reaching implications, not only for our understanding of the time constraints under which different visual pathways operate, but also in relation to how these seemingly “primitive” subcortical visual pathways can control complex everyday behavior without recourse to conscious vision.


2017 ◽  
Vol 372 (1715) ◽  
pp. 20160504 ◽  
Author(s):  
Megumi Kaneko ◽  
Michael P. Stryker

Mechanisms thought of as homeostatic must exist to maintain neuronal activity in the brain within the dynamic range in which neurons can signal. Several distinct mechanisms have been demonstrated experimentally. Three mechanisms that act to restore levels of activity in the primary visual cortex of mice after occlusion and restoration of vision in one eye, which give rise to the phenomenon of ocular dominance plasticity, are discussed. The existence of different mechanisms raises the issue of how these mechanisms operate together to converge on the same set points of activity. This article is part of the themed issue ‘Integrating Hebbian and homeostatic plasticity’.


NeuroImage ◽  
2012 ◽  
Vol 63 (3) ◽  
pp. 1464-1477 ◽  
Author(s):  
Andreas A. Ioannides ◽  
Vahe Poghosyan ◽  
Lichan Liu ◽  
George A. Saridis ◽  
Marco Tamietto ◽  
...  

2018 ◽  
Author(s):  
Andreea Lazar ◽  
Chris Lewis ◽  
Pascal Fries ◽  
Wolf Singer ◽  
Danko Nikolić

SummarySensory exposure alters the response properties of individual neurons in primary sensory cortices. However, it remains unclear how these changes affect stimulus encoding by populations of sensory cells. Here, recording from populations of neurons in cat primary visual cortex, we demonstrate that visual exposure enhances stimulus encoding and discrimination. We find that repeated presentation of brief, high-contrast shapes results in a stereotyped, biphasic population response consisting of a short-latency transient, followed by a late and extended period of reverberatory activity. Visual exposure selectively improves the stimulus specificity of the reverberatory activity, by increasing the magnitude and decreasing the trial-to-trial variability of the neuronal response. Critically, this improved stimulus encoding is distributed across the population and depends on precise temporal coordination. Our findings provide evidence for the existence of an exposure-driven optimization process that enhances the encoding power of neuronal populations in early visual cortex, thus potentially benefiting simple readouts at higher stages of visual processing.


2005 ◽  
Vol 94 (2) ◽  
pp. 1336-1345 ◽  
Author(s):  
Bartlett D. Moore ◽  
Henry J. Alitto ◽  
W. Martin Usrey

The activity of neurons in primary visual cortex is influenced by the orientation, contrast, and temporal frequency of a visual stimulus. This raises the question of how these stimulus properties interact to shape neuronal responses. While past studies have shown that the bandwidth of orientation tuning is invariant to stimulus contrast, the influence of temporal frequency on orientation-tuning bandwidth is unknown. Here, we investigate the influence of temporal frequency on orientation tuning and direction selectivity in area 17 of ferret visual cortex. For both simple cells and complex cells, measures of orientation-tuning bandwidth (half-width at half-maximum response) are ∼20–25° across a wide range of temporal frequencies. Thus cortical neurons display temporal-frequency invariant orientation tuning. In contrast, direction selectivity is typically reduced, and occasionally reverses, at nonpreferred temporal frequencies. These results show that the mechanisms contributing to the generation of orientation tuning and direction selectivity are differentially affected by the temporal frequency of a visual stimulus and support the notion that stability of orientation tuning is an important aspect of visual processing.


2016 ◽  
Vol 23 (5) ◽  
pp. 529-541 ◽  
Author(s):  
Sara Ajina ◽  
Holly Bridge

Damage to the primary visual cortex removes the major input from the eyes to the brain, causing significant visual loss as patients are unable to perceive the side of the world contralateral to the damage. Some patients, however, retain the ability to detect visual information within this blind region; this is known as blindsight. By studying the visual pathways that underlie this residual vision in patients, we can uncover additional aspects of the human visual system that likely contribute to normal visual function but cannot be revealed under physiological conditions. In this review, we discuss the residual abilities and neural activity that have been described in blindsight and the implications of these findings for understanding the intact system.


Perception ◽  
10.1068/p5338 ◽  
2005 ◽  
Vol 34 (11) ◽  
pp. 1339-1352 ◽  
Author(s):  
Ernest Greene ◽  
William Frawley

In previous studies, we have found that the accuracy in judging collinearity of lines or dots varies considerably from one subject to another as a function of the relative angle of the stimulus elements. A model of errors generally shows large excursions across several subranges of angular position. These do not appear to be motor errors, at least not ones that are well separated from perceptual mechanisms. The errors are most likely generated at primary visual cortex, or beyond. We examined and modeled accuracy in judging collinearity of dot pairs, varying the angular position of the dots through 360°, the distance between the dots (stimulus span), and the distance at which the subject was required to respond (response span). Subjects manifested idiosyncratic profiles of error across angular positions, as reported previously. But across the tested range of spans, from 4 to 8 deg, the errors tended to be the same, irrespective of stimulus or response span. This suggests that the judgments are based on a radial (angular) measure of spatial position. We discuss these results in the context of proposals that the brain maps spatial position using rotation coordinates. These new data are consistent with the hypothesis that subjects use the z-axis coordinates as a mental protractor for judging angular position and collinearity.


Sign in / Sign up

Export Citation Format

Share Document