scholarly journals Extracting Nonlinear Dynamics from Psychological and Behavioral Time Series Through HAVOK Analysis

2020 ◽  
Author(s):  
Robert Glenn Moulder ◽  
Elena Martynova ◽  
Steven M. Boker

Analytical methods derived from nonlinear dynamical systems, complexity, and chaos theories offer researchers a framework for in-depth analysis of time series data. However, relatively few studies involving time series data obtained from psychological and behavioral research employ such methods. This paucity of application is due to a lack of general analysis frameworks for modeling time series data with strong nonlinear components. In this article, we describe the potential of Hankel alternative view of Koopman (HAVOK) analysis for solving this issue. HAVOK analysis is a unified framework for nonlinear dynamical systems analysis of time series data. By utilizing HAVOK analysis, researchers may model nonlinear time series data in a linear framework while simultaneously reconstructing attractor manifolds and obtaining a secondary time series representing the amount of nonlinear forcing occurring in a system at any given time. We begin by showing the mathematical underpinnings of HAVOK analysis and then show example applications of HAVOK analysis for modeling time series data derived from real psychological and behavioral studies.

2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Vandana Sakhre ◽  
Sanjeev Jain ◽  
Vilas S. Sapkal ◽  
Dev P. Agarwal

Fuzzy Counter Propagation Neural Network (FCPN) controller design is developed, for a class of nonlinear dynamical systems. In this process, the weight connecting between the instar and outstar, that is, input-hidden and hidden-output layer, respectively, is adjusted by using Fuzzy Competitive Learning (FCL). FCL paradigm adopts the principle of learning, which is used to calculate Best Matched Node (BMN) which is proposed. This strategy offers a robust control of nonlinear dynamical systems. FCPN is compared with the existing network like Dynamic Network (DN) and Back Propagation Network (BPN) on the basis of Mean Absolute Error (MAE), Mean Square Error (MSE), Best Fit Rate (BFR), and so forth. It envisages that the proposed FCPN gives better results than DN and BPN. The effectiveness of the proposed FCPN algorithms is demonstrated through simulations of four nonlinear dynamical systems and multiple input and single output (MISO) and a single input and single output (SISO) gas furnace Box-Jenkins time series data.


2015 ◽  
Vol 2015 ◽  
pp. 1-3 ◽  
Author(s):  
Ming-Chi Lu ◽  
Hsing-Chung Ho ◽  
Chen-An Chan ◽  
Chia-Ju Liu ◽  
Jiann-Shing Lih ◽  
...  

We investigate the interplay between phase synchronization and amplitude synchronization in nonlinear dynamical systems. It is numerically found that phase synchronization intends to be established earlier than amplitude synchronization. Nevertheless, amplitude synchronization (or the state with large correlation between the amplitudes) is crucial for the maintenance of a high correlation between two time series. A breakdown of high correlation in amplitudes will lead to a desynchronization of two time series. It is shown that these unique features are caused essentially by the Hilbert transform. This leads to a deep concern and criticism on the current usage of phase synchronization.


Author(s):  
Jochen Garcke ◽  
Rodrigo Iza-Teran ◽  
Marvin Marks ◽  
Mandar Pathare ◽  
Dirk Schollbach ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document