scholarly journals Accounting for the build-up of proactive interference across lists in a list length paradigm reveals a dominance of item-noise in recognition memory

2019 ◽  
Author(s):  
Julian Fox ◽  
Simon Dennis ◽  
Adam F Osth

There has been a longstanding debate concerning whether interference in recognition memory is attributable to other items on the study list (i.e., item-noise) or to prior memories (i.e., context-noise and background-noise). Recently, Osth and Dennis (2015) devised a global matching model that could estimate the magnitude of each interference contribution and they found that context-noise and background-noise were dominant in recognition. In the present investigation, data from a list length experiment were analysed using variants of the Osth, Jansson, Dennis and Heathcote (2018) model, that integrates the memory retrieval components of the Osth and Dennis (2015) model with the diffusion decision model (Ratcliff, 1978) to jointly account for choice probabilities and RT distributions. The standard version of the model, like existing recognition models, treated each condition as if no proactive interference had accumulated over the session. A more comprehensive version of the model allowed both study and test items from prior conditions to contribute proactive interference (PI) to future conditions. While the standard model estimated a dominance of background-noise, the PI model estimated a dominance of item-noise, reversing the conclusions made by Osth and Dennis (2015). Along with list length, the experimental design provided a measure of the test position effect (TPE). While the standard model attributed the TPE to context drift, the PI model attributed the TPE to both context drift and increases in item-noise.

2020 ◽  
Vol 18 ◽  
pp. 66-77
Author(s):  
Abdeljali Habjial

The Standard Model production of four top quarks in the process pp --> tttt at a center-of-mass energy s1/2=13 Tev. The data collected by the ATLAS detector represents an impressive study potential, with an integrated luminosity of around 139 fb-1. In this manuscript, we present the production process of four top quarks at the LHC as well as some new physics models associated with this process. These models are studied in analysis carried. Some preliminary results are presented, in particular those of a new method for estimating background noise due to false leptons developed.


1977 ◽  
Vol 29 (3) ◽  
pp. 451-460 ◽  
Author(s):  
David Gaffan

Experiment I was a yes-no recognition task with lists of one, two or four items to remember. Each item in the experiment appeared in only one list, and each list was presented only once. One group of subjects performed the task with complex pictures. Their results were incompatible with the hypothesis of exhaustive memory scanning, since the function relating “yes” response latency to list length was not parallel to but steeper than the function for “no” responses. Another group performed the task with words. Their results were consistent with exhaustive memory-scanning. Experiment II was a similar task in which the familiarity was varied of the test items to which the subjects had to respond “no”. That variation affected response latency with pictures but not with words. From these results and from a consideration of relevant neurological data, the hypothesis is advanced that familiarity discrimination and exhaustive memory-scanning are separate mechanisms.


Author(s):  
Sterling P. Newberry

At the 1958 meeting of our society, then known as EMSA, the author introduced the concept of microspace and suggested its use to provide adequate information storage space and the use of electron microscope techniques to provide storage and retrieval access. At this current meeting of MSA, he wishes to suggest an additional use of the power of the electron microscope.The author has been contemplating this new use for some time and would have suggested it in the EMSA fiftieth year commemorative volume, but for page limitations. There is compelling reason to put forth this suggestion today because problems have arisen in the “Standard Model” of particle physics and funds are being greatly reduced just as we need higher energy machines to resolve these problems. Therefore, any techniques which complement or augment what we can accomplish during this austerity period with the machines at hand is worth exploring.


2019 ◽  
Author(s):  
Adib Rifqi Setiawan

Put simply, Lisa Randall’s job is to figure out how the universe works, and what it’s made of. Her contributions to theoretical particle physics include two models of space-time that bear her name. The first Randall–Sundrum model addressed a problem with the Standard Model of the universe, and the second concerned the possibility of a warped additional dimension of space. In this work, we caught up with Randall to talk about why she chose a career in physics, where she finds inspiration, and what advice she’d offer budding physicists. This article has been edited for clarity. My favourite quote in this interview is, “Figure out what you enjoy, what your talents are, and what you’re most curious to learn about.” If you insterest in her work, you can contact her on Twitter @lirarandall.


2019 ◽  
Author(s):  
Adib Rifqi Setiawan

Put simply, Lisa Randall’s job is to figure out how the universe works, and what it’s made of. Her contributions to theoretical particle physics include two models of space-time that bear her name. The first Randall–Sundrum model addressed a problem with the Standard Model of the universe, and the second concerned the possibility of a warped additional dimension of space. In this work, we caught up with Randall to talk about why she chose a career in physics, where she finds inspiration, and what advice she’d offer budding physicists. This article has been edited for clarity. My favourite quote in this interview is, “Figure out what you enjoy, what your talents are, and what you’re most curious to learn about.” If you insterest in her work, you can contact her on Twitter @lirarandall.


2014 ◽  
Vol 36 (10) ◽  
pp. 2156-2167
Author(s):  
Qiang LI ◽  
Deng-Guo FENG ◽  
Li-Wu ZHANG ◽  
Zhi-Gang GAO

Sign in / Sign up

Export Citation Format

Share Document