scholarly journals Dualband Microstrip Elliptic Patch 1x4 MIMO Antenna Design for 5G System Device

Author(s):  
Yusnita Rahayu ◽  
Mayo Andika

This paper presents a dual-band antenna for the 5G system communication device. The MIMO antenna can potentially boost the capacity and transmission rates to a new level in a communication system. The MIMO 1x4 elliptic circular patch is designed at 24 GHz and 27.8 GHz. From the simulated S11 results, a single patch antenna provides -16.364 dB at 24 GHz and -35.44 dB at 27.86 GHz. While for the MIMO 1x4 patch, the simulated S11 of -15.563 dB and -21.889 dB are achieved at both 24 GHz and 27.8 GHz, respectively. It has a gain value of 9.04 dBi at the 24 GHz and a gain value of 6.56 dBi at the 27.8 GHz. These gains are higher than the gain obtained with a single element.

2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Noelia Ortiz ◽  
Francisco Falcone ◽  
Mario Sorolla

A simple and successful dual band patch linear polarized rectangular antenna design is presented. The dual band antenna is designed etching a complementary rectangular split-ring resonator in the patch of a conventional rectangular patch antenna. Furthermore, a parametric study shows the influence of the location of the CSRR particle on the radiation characteristics of the dual band antenna. Going further, a miniaturization of the conventional rectangular patch antenna and an enhancement of the complementary split-ring resonator resonance gain versus the location of the CSRR on the patch are achieved. The dual band antenna design has been made feasible due to the quasistatic resonance property of the complementary split-ring resonators. The simulated results are compared with measured data and good agreement is reported.


Author(s):  
Swati Dhandade

This paper presents a dual-band MIMO antenna design with compact size for 5G communication under 6 GHz band frequency. The metallic monopole stub structure is used to miniaturization of antenna. The L-shape monopole antenna is modified by adding semi-circular element in radiating structure of monopole to obtain dual-band resonance. The High isolation is achieved by employing T-shaped stub in ground plane.It has compact size is 45 mm × 25 mm × 1.6 mm3. The proposed Dual Band MIMO antenna has been design on FR4 material with ɛr = 4.4 with 1.6 thickness. The proposed antenna has 5G application in the bands of 2.5 GHz (2.34 GHz-2.62 GHz) and 3.5 GHz (3.20 GHz-5.20 GHz). The bandwidth of antenna getting 320MHz and 2500MHz at 2.5GHz and 3.5GHz respectively. The Isolation (S21) of proposed antenna is -31.2 dB at 2.5 GHz and -19.5 dB at 3.5 GHz. VSWR is less than 1.06 for both the bands. The designed dual band MIMO antenna covers 5G bands of 2.3-2.4GHz (n30/n40), 2.4-2.5GHz (n7/n38/n41/n90), and 3.2-5.2GHz (n77/n78/n80). The experimental and simulated results observed good matching except some slight variation. This proposed dual band MIMO antenna is suitable for 5G mobile Communications.


2008 ◽  
Vol 5 (4) ◽  
pp. 156-160 ◽  
Author(s):  
Peter Uhlig ◽  
Dirk Manteuffel ◽  
Stefan Malkmus

The adaptation of the LTCC (Low Temperature Cofired Ceramics) process for an unusually high number of layers (up to 50) will be described and explained in this paper. Special attention will be paid to lamination, debindering, and cofiring of the LTCC stack. The influence of necessary process variations on electrical properties such as permittivity will be studied. Very often the number of layers is determined by the complexity of the circuit. Here a minimum substrate height is required for the electrical performance of a patch antenna, particularly in terms of bandwidth. A dual band antenna for two Galileo bands at 1.58 GHz and 1.18 GHz was realized as a combination of two coupled patches. Circular polarization was attained by separately feeding each patch with a hybrid coupler. These features add further layers to an already considerable substrate height.


Sign in / Sign up

Export Citation Format

Share Document