scholarly journals Design and Analysis of MIMO Dual Band Patch Antenna for 5G New Radio Applications in Mobile Terminals

Author(s):  
Swati Dhandade

This paper presents a dual-band MIMO antenna design with compact size for 5G communication under 6 GHz band frequency. The metallic monopole stub structure is used to miniaturization of antenna. The L-shape monopole antenna is modified by adding semi-circular element in radiating structure of monopole to obtain dual-band resonance. The High isolation is achieved by employing T-shaped stub in ground plane.It has compact size is 45 mm × 25 mm × 1.6 mm3. The proposed Dual Band MIMO antenna has been design on FR4 material with ɛr = 4.4 with 1.6 thickness. The proposed antenna has 5G application in the bands of 2.5 GHz (2.34 GHz-2.62 GHz) and 3.5 GHz (3.20 GHz-5.20 GHz). The bandwidth of antenna getting 320MHz and 2500MHz at 2.5GHz and 3.5GHz respectively. The Isolation (S21) of proposed antenna is -31.2 dB at 2.5 GHz and -19.5 dB at 3.5 GHz. VSWR is less than 1.06 for both the bands. The designed dual band MIMO antenna covers 5G bands of 2.3-2.4GHz (n30/n40), 2.4-2.5GHz (n7/n38/n41/n90), and 3.2-5.2GHz (n77/n78/n80). The experimental and simulated results observed good matching except some slight variation. This proposed dual band MIMO antenna is suitable for 5G mobile Communications.

2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Abubaker Ahmed Elobied ◽  
Xue-Xia Yang ◽  
Ningjie Xie ◽  
Steven Gao

This paper presents a close-spaced dual-band 2 × 2 multiple-input multiple-output (MIMO) antenna with high isolation based on half-mode substrate integrated waveguide (HMSIW). The dual-band operation of the antenna element is achieved by loading a rectangular patch outside the radiating aperture of an HMSIW cavity. The HMSIW cavity is excited by a coaxial probe, whereas the rectangular patch is energized through proximity coupling by the radiating aperture of HMSIW. The antenna elements can be closely placed using the rotation and orthogonal arrangement for a 2 × 2 array. Small neutralization lines at the center of the MIMO antenna can increase the isolation among its elements by around 10 dB in the lower band and 5 dB in the higher band. A prototype of the MIMO antenna is fabricated and its performance is measured. The measured results show that the resonant frequencies are centered at 4.43 and 5.39 GHz with bandwidths of 110 and 80 MHz and peak gains of 6 and 6.4 dBi, respectively. The minimum isolation in both bands is greater than 35 dB. The envelope correlation coefficient is lower than 0.005 within two operating bands.


2021 ◽  
Vol 36 (3) ◽  
pp. 282-294
Author(s):  
Asmaa Farahat ◽  
Khlaid Hussein

In this paper, a dual-band (28/38 GHz) linear antenna arrays of four and eight elements are proposed to work as a MIMO arrays for the 5G communication systems. Each element in the array is a dual-band Yagi-Uda antenna designed to operate at 28 and 38 GHz. The eight-elements array size has a total dimension of 79.4 mm x 9.65 mm excluding the feeding microstrip line. The maximum gain of the array is about 18 dB. The peaks of correlation at matched angles (PCMA) technique is applied to determine the direction of arrival for multiple incoming signals. The effects of phase noise and additive Gaussian noise on the error in the DoA estimation are studied showing good accuracy of the PCMA algorithm. Numerical and experimental investigations are achieved to assess the performance of both the single-element antenna and the eight-element MIMO linear antenna array. It is shown that the simulation results agree with the experimental measurements and both show good performance of the single antenna as well as the MIMO linear array system. The envelope correlation coefficient (ECC) and the diversity gain (DG) are calculated and the results show that the proposed MIMO antenna system is suitable for the forthcoming 5G mobile communications. The radiation patterns for single antenna and four-element array are measured and compared to the electromagnetic simulation results showing good agreement.


Author(s):  
Ruchi ◽  
Amalendu Patnaik ◽  
M. V. Kartikeyan

Abstract Designing miniaturized multiband antennas to cover both the 5G new radio frequencies (FR1 and FR2) simultaneously is a challenge for wireless communication researchers. This paper presents two antenna designs : a dual-band printed antenna of size 18 × 16 × 0.285 mm3 operating at FR1–5.8 GHz and FR2–28 GHz and a triple-band printed antenna with dimensions 30 × 25 × 0.543 mm3 operating at FR1–3.5 GHz and 5.8 GHz (sub-6 GHz microwave frequency bands) and FR2–28 GHz (mm-wave frequency band). The final projected triple-band antenna has a compact size with an impedance bandwidth of 12.71%, 11.32%, and 18.3% at 3.5 GHz, 5.8 GHz, and 28 GHz, respectively with the corresponding gain of 1.86 dB, 2.55 dB, and 4.41 dB. The measured radiation characteristics of the fabricated prototypes show that the proposed designs are suitable for trendy 5G-RFID and mobile Internet of things (IoT) applications.


2018 ◽  
Vol 7 (3.36) ◽  
pp. 13
Author(s):  
Muhammad Sani Yahya ◽  
Ishaku Abdul Dalyop ◽  
Yusuf Saleh ◽  
Murtala Aminu-Baba

The design of compact dual band grid array antenna (GAA) designed on FR-4 substrate for future Fifth Generation (5G) Mobile Communications at 10 GHz is reported. The proposed antenna uses coaxial technique of feeding and has a dimension of 48 mm × 55 mm × 1.6 mm. Simulation results using CST microwave studio illustrates that the antenna has a band from 10.03 GHz to 10.68 GHz and another band from 10.7 GHz to 12.23 GHz. This excludes the 10.68 – 10.7 GHz band in which emissions were forbidden by the Radio Regulations in the sense that it has been allocated for the Radio Astronomy, Space Research and Earth Exploration Satellite (passive). The antenna has a maximum gain of 8.03 dBi at 10 GHz, thus a good candidate for the future 5G mobile communications. 


Sign in / Sign up

Export Citation Format

Share Document