scholarly journals Maping the Soil Fertility of Bisankhel Catchment of Chitlang Vdc and Comparison of Different Geo-Spatial Interpolation Techniques

2018 ◽  
Vol 35 (1) ◽  
pp. 95-104 ◽  
Author(s):  
B. Bhusal ◽  
S. Lamichhane ◽  
R. K. Shrestha

The aim of this research work was to map the status of soil nutrients in the Bisankhel catchment of Chitlang VDC, Makawanpur, Nepal. The study area covered 1023.25 hectares of land, extending from 85°8'8.433"E to 85°10'10.198"E longitude and 27°37'24.251"N to 27°40'21.560"N latitude. Total Nitrogen (N), available Phosphorus(P), extractable Potassium (K), soil organic matter (SOM) and soil pH were measured for 50 soil samples collected using random sampling representing different land uses in the study area. Most of the samples were found very acidic where uplands (4.879±0.119) were more acidic than lowlands (5.036±0.0973). Most samples upon analysis were found to be medium in SOM and total N. SOM was slightly higher in lowlands (3.385±0.256%) than in uplands (3.05±0.206%). Total N was also slightly higher in lowlands (0.145±0.00634%) than in uplands (0.127±0.00639%). Similarly, Available P and K were found very high in majority of the soil samples. Available P was slightly higher in lowlands (92.34±16.96ppm) than in uplands (71.58±15.47ppm). However, extractable K was slightly more in uplands (269±31.32ppm) than in lowlands (240.4±23ppm). Spatial prediction using various interpolation methods was performed in ArcGIS 10.5 software platform using ‘Geostatistical Analyst’ extension. The predicted values in raster data structure were used for mapping the soil fertility status of the catchment. Different interpolation methods were evaluated following cross-validation approach. Comparison of prediction errors was carried out to select the optimum prediction methods for the interpolation of soil nutrient values. Completely Regularized Spline and Ordinary Kriging methods were found to yield better prediction of soil nutrient status among the Deterministic and Kriging methods respectively. Soil pH being the limiting factor, pH control was necessary.

Soil Systems ◽  
2018 ◽  
Vol 2 (4) ◽  
pp. 57 ◽  
Author(s):  
Sudarshan Kharal ◽  
Babu Khanal ◽  
Dinesh Panday

Unscientific land use and cropping techniques have led high soil erosion and degradation of soil quality in the mid-hills of Nepal. To understand the effects of land use systems for selected soil chemical properties in mid-hills, composite soil samples at 0 cm to 20 cm depth were collected from five different land-use systems: Grassland, forest land, upland, lowland, and vegetable farms from Dhading district of Nepal in 2017. Soil samples were analyzed for soil fertility parameters: Soil pH, organic matter (OM), total nitrogen (N), available phosphorus (P), available potassium (K) and its effect due to different land use systems were compared. Results showed that soil pH was neutral in vegetable farms (6.61), whereas the rest of the land-use systems had acidic soils. Soil OM (3.55%) and N (0.18%) content was significantly higher in forest, but the lowest soil OM (1.26%) and N (0.06%) contents were recorded from upland and lowland farms, respectively. Available P was the highest in the vegetable farm (41.07 mg kg−1) and was the lowest in grazing land (2.89 mg kg−1). The upland farm had significantly higher P levels (39.89 mg kg−1) than the lowland farm (9.02 mg kg−1). Available K was the highest in the vegetable farm (130.2 mg kg−1) and lowest in grazing land (36.8 mg kg−1). These results indicated that the land under traditional mixed cereal-based farming had poor soil health compared with adjacent vegetable, grazing, and forest lands among the study area. The variations in soil fertility parameters suggest the immediate need for improvement in soil health of traditional farmlands.


2020 ◽  
Vol 2020 ◽  
pp. 1-16 ◽  
Author(s):  
Fanuel Laekemariam ◽  
Kibebew Kibret

Soil is spatially heterogeneous and needs site-specific management. However, soil nutrient information at larger scale in most cases is lacking. Consequently, fertilizer advisory services become dependent upon blanket recommendation approach. Subsequently, it affects yield and profitability. This study is aimed at explaining soil fertility heterogeneity in Wolaita zone, Southern Ethiopia. About 789 soil samples were collected to evaluate soil physical (color, particle size, and bulk density) and chemical properties (pH, OC, N, P, K, Ca, Mg, B, Cu, Fe, Mn, Zn, PBS, and CEC). The laser diffraction method for soil particles and mid-infrared diffused reflectance (MIR) spectral analysis for OC, TN, and CEC determination were employed. Mehlich-III extraction and inductively coupled plasma (ICP) spectrometer measurement were used for the remaining elements. The result based on principal component analysis showed that 52% of the total variations were explained by exchangeable bases, CEC, pH, available P, Cu, B, and particle sizes. Clay texture and acidic soil reaction are dominant. Soil parameters with the following ranges were found at low status: soil OC (0.2–6.9%), total N (0.01–0.7%), available P (0.1–238 mg/kg), S (4–30 mg/kg), B (0.01–6.9 mg/kg), and Cu (0.01–5.0 mg/kg). Besides, low levels of exchangeable Ca, Mg, and K (Mg-induced K deficiency) on 22, 34, and 54% soil samples, respectively, were recorded. The soil contained sufficient Fe, Zn, and Mn. In conclusion, the study aids in developing practical decision for optimum soil management interventions and overcomes lower productivity occurring due to fertilizer use that is not tailored to the local conditions. Overall, continuous cropping, low return of crop residues, and low and/or no fertilizer application might have caused the low status of N, P, K, S, B, and Cu. Therefore, application of inorganic fertilizers specific to the site, lime in acidic soils, and organic fertilizers are recommended to restore the soil fertility and improve crop productivity.


2019 ◽  
Author(s):  
Sabura Shara ◽  
Rony Swennen ◽  
Jozef Deckers ◽  
Fantahun Weldesenbet ◽  
Laura Vercammen ◽  
...  

Abstract. Enset (Ensete ventricosum) is a productive, drought-tolerant and multipurpose food security crop grown in the densely populated Ethiopian highlands. Its production suffers from poor soil fertility management and a bacterial wilt disease caused by the pathogen Xanthomonas campestris pv. musacearum. The aim of this study was to assess soil-plant-nutrient variation within enset home gardens over three different altitudes (ranging from 2000–3000 masl) in the Chencha catchment of the Gamo highlands and investigate whether this variation affects disease prevalence. Plant available P, Ca and Mg significantly increase with decreasing elevation but significantly decline with distance from the house. In addition, soil pH, conductivity, total organic carbon (TOC), total N, available K, Mn and Fe levels significantly decline with distance from the house. This indicates that soil fertility factors are influenced by both agro-ecology and farmers' management practices. Moreover, most nutrients reach very high levels in the garden whereas the more distant outfields are severely nutrient deprived. Plant nutrient levels are not correlated to soil nutrient levels except for N. Twenty two percent of the studied farms are symptomatic for bacterial wilt and its prevalence increases with decreasing elevation. Symptomatic gardens have a higher soil pH and available P, K and Ca levels. We conclude that soil fertility management in enset gardens should be optimized in relation to agro-ecological conditions and that both elevation and soil nutrient status need to be considered when developing strategies to curb the current Xanthomonas wilt epidemic.


2022 ◽  
Vol 9 (1) ◽  
pp. 171-179
Author(s):  
Pipit Tandyana Febriantika ◽  
Faris Nur Fauzi Athallah ◽  
Restu Wulansari ◽  
Didik Suprayogo

Tea plantations are mostly more suitable to be cultivated in areas with highland characteristics to get its’ subtropical climate which is great for the growth of tea. This requirement showed that tea plantations are also cultivated in areas with different ranges of slope and this condition could affect soil chemical properties such as soil nutrient content, including soil pH, soil organic carbon (SOC) and contents of N, Available P, K and Mg inside the soil. This study was conducted to analyze the correlation on different slope levels with soil nutrient contents by collecting the secondary data of land slope and soil chemical properties, analyzed statistically with a simple correlation method. The result showed there was no significant correlation between the slope levels and contents of soil chemical properties. Most of the soil chemical properties have a negative correlation to different slope gradients such as soil pH (r = -0.391), SOC (r = -0.348), total N ( r = -0.169), Available P (r = - 0.039), K content (r = -0.135), Mg content (r = -0.027). where the highest levels of nutrients were found at the lowest level of slope based on the site data. Soil chemical properties are needed to be considered in many tea plantations with different levels of slope and could be used as a recommendation in planning for conservation or restoration of degraded land or soil.


2011 ◽  
Vol 347-353 ◽  
pp. 3559-3563
Author(s):  
Jin Ling Zhao ◽  
Da Cheng Wang ◽  
Dong Yan Zhang ◽  
Ju Hua Luo ◽  
Wen Jiang Huang

This paper aims to investigate the soil fertility of Shunyi District’s cropland combing remote sensing and ground census data based on the Geostatistical Analyst of ArcGIS. Firstly, Landsat TM image was used to identify the spatial distribution and estimate the cropland plot area using support vector machine (SVM) classification method, and the overall classification is 91.5 % by 435 field survey points. Then, the survey indicators were added to ArcGIS such as organic matter, available P, available K, total N, soil pH, etc. After exploring the sample data for each indicator, trend surfaces were generated using the optimum prediction models after cross validation. Finally, according to the identified cropland plots, the soil quality index (SQI) was derived to map the soil fertility of the study area. The result shows that the southwestern part and northeastern corner of this district were found to be high in soil pH, which lies in between 8.2 and 8.6. Additionally, wide variability of organic matter, total N, available P and K were noted which can be due to the extent of cultivation in these areas while the change in fertility level could be due to anthropogenic influence. When considering the soil heavy metals, Zn, Fe, Cu and Mn show almost the same distribution.


2020 ◽  
Vol 6 ◽  
pp. 115-126
Author(s):  
Shukra Raj Shrestha ◽  
Jiban Shrestha ◽  
Sanjeet Kumar Jha ◽  
Dinesh Khadka ◽  
Prakash Paneru ◽  
...  

Field experiments were conducted for four years (2014-2017) at five locations namely Salbani, Bhokraha, Simariya, Bhaluwa and Kaptanganj of Sunsari district to assess the changes in soil chemical properties under conservation agriculture (CA)-based practices in two cropping systems namely rice-kidney bean-maize at Salbani and rice-wheat at rest of the locations. In rice-wheat cropping system, there were four treatments: (1) conventional tillage (CT) for rice transplantation and subsequent wheat sowing, (2) conventional tillage rice transplantation followed by zero tillage (ZT) wheat, (3) unpuddled rice transplantation followed by zero tillage wheat, (4) zero tillage in both rice and wheat. Similarly, in rice-kidney bean-maize cropping system, there were four treatments; (1) conventional tillage for rice transplantation and sowing of both kidney bean and maize, (2) conventional tillage rice transplantation followed by zero tillage in both kidney bean and maize, (3) unpuddled rice transplantation followed by zero tillage in both kidney bean and maize, (4) zero tillage in all three crops. Soil samples were taken at initial and every year after rice harvest.The soil samples were analyzed for total nitrogen, available phosphorus, available potassium, pH and soil organic matter.Total nitrogen (N) showed a slightly decreasing trend in the first three years and showed a slight increase at the end of experiment under ZT in all locations. The total N under ZT changed from 0.12 to 0.13%, 0.05 to 0.06%, 0.10 to 0.12%, 0.11 to 0.08% and 0.09 to 0.13% in Salbani, Bhokraha, Simariya, Bhaluwa and Kaptanganj, respectively.  All locations showed the positive values of available potassium; Salbani  revealing considerable change of 64.3 to 78.5 mg/kg in CT while 68.4 to 73.3 mg/kg in ZT condition. The treatment where rice was transplanted in unpuddled condition and zero tilled to wheat, had a mean value of available phosphorus and potassium as 87.3 and 81.9 mg/kg respectively. Soil pH ranged from 4.8 to 7.1 in CT while it was 5.2 to 6.8 in ZT across the locations. The change in soil organic matter in CT of all locations except Salbani was narrower as compared to ZT.


2013 ◽  
Vol 295-298 ◽  
pp. 2544-2548
Author(s):  
Jiu Jin Xiao ◽  
Hong Xing Ma ◽  
Chuang Tai Lu

It is generally accepted that to overuse fertilize can led to cause fertilize resource waste, increase agriculture production cost, reducing the quality of agricultural products, and cause agricultural non-point source pollution. Determining soil nutrient distribution is critical to identify sites which are at risk of N, P and K nutrition loading. In order to know the soil nutrition spatial distribution and to determine agricultural rational fertilization, a total of 98 soil samples from the plow layer (0-20 cm) were collected in low mountain-hilly region of Sichuan Province, China. Spatial variability and distribution of soil organic matter (SOM), total N (TN), available nitrogen (AN), available phosphorus (AP) and available potassium (AK) in agricultural soils were studied using geographic information system (GIS) software. And the analytical hierarchy process (AHP) was used to determine the weight of indexes by using quantitative analysis.


Author(s):  
P. O. Kisinyo ◽  
P. A. Opala ◽  
S. O. Gudu

Soil acidity, low level of nitrogen (N), phosphorus (P) and soil organic matter are major constraints to sorghum production in Kenya. We investigated the effect of farmyard manure (FYM) and combined application of inorganic nitrogen and phosphate fertilizers applied as calcium ammonium nitrate and triple superphosphate respectively, on soil pH, available P, total N, organic carbon and sorghum grain yield, on a smallholder farm in Siaya County, Kenya. The experiment was a randomized complete block design consisting of four treatments i.e., FYM applied at 0 and 4 t ha-1 in a factorial arrangement with inorganic fertilizers applied to provide 0 and 26 kg P ha-1 + 75 kg N ha-1, replicated three times. The study was conducted during the long rains of March to June and short rains September to December, 2017. Farmyard manure was applied only during the long rains season of 2017, while P and N fertilizers were applied in both cropping seasons. Soil sampling was done before treatment applications and at harvest time. Soil analysis revealed that the soil was acidic (pH = 4.9) with low available P (5.3 mg kg-1 and N (0.08%) but moderate amounts of C (2.0%) and Ca (3.4 cmol kg-1). The effect of sole application of FYM on soil P, N and grain yield were lower than those of the inorganic fertilizers. Farmyard manure increased soil pH because of its alkalinity (pH = 7.1) while triple superphosphate reduced it due to release of phosphoric acid into the soil. The mean annual (average of two seasons) grain yield increments, above the control with no nutrient inputs, due to 4.0 t FYM, 26 kg P ha-1 + 75 kg N ha-1 and 4.0 FYM + 26 kg P ha-1 + 75 kg N ha-1 were 64, 191 and 259%, respectively. Therefore combined applications of FYM and N and P fertilizers have the potential to increase sorghum grain yield on Kenyan acid soils.


2018 ◽  
Vol 3 (02) ◽  
pp. 108-115
Author(s):  
S. P. Vista ◽  
T. B. Ghimire ◽  
T. S. Rai ◽  
B. S. Kutu ◽  
B. K. Karna

Potato is a staple food crop in high hills and mountains and a major vegetable throughout the country and one of the most important cash generating crops in Nepal. With the efforts undertaken by research and extension sectors, its productivity has significantly increased in last twenty years. However, this is not sufficient for increasing population of the country. Considering its potentiality for income, employment, industrial products, export and processing, appropriate technologies are urgent.Soil fertility evaluation is the most basic decision making tool for the sustainable soil nutrient management. Soil fertility studies and mapping is an effective way to diagnose soil status and recommend as per the need of the nutrient to particular crop in the area. This research aims to assess and prepare soil nutrient map of potato super zone, Kavrepalanchowk in Nepal. The specific objectives of the research were to assess soil texture, pH and organic matter status and simultaneously prepare soil fertility map of the potato super zone. A total of 202 soil samples were collected and nutrients were analyzed using standard procedure in the soil laboratory. Composite soil samples were collected from 6 to 10 different spots of the area at 0-20 cm depth by using soil auger. The GPS location of each soil sampling point was noted. The soil sampling point of each zone was determined by studying various aspects (area, slope, colour, texture, etc.) of the study area. Based on the nutrient status, nutrient maps were prepared and presented. Soil fertility maps were prepared by observing the critical nutrients required for the specific crops and by giving those nutrients certain ranking based on the nutrients role for the crop. The soil of Potato super zone was mostly found to be silty loam, moderately acidic (pH 5.9), medium in organic matter content (2.67%) and total nitrogen (0.13%), high in available phosphorus content (56 kg/ha) and available potassium (356kg/ha). There is also sandy loam, loam and silty clay loam types of soil in the area. Soil fertility maps were prepared by setting criteria based on nutrient status that were tested in the laboratory and on the basis of nutrients that are critical for each crops of the super zones. Vegetable super zone soil was found having medium (50%) and high (30%) fertility status. Based on the soil analysis report, it could be concluded that the soils of potato super zone is fair enough for cultivating potato crop at the moment.


Author(s):  
Nasiru M. Danmowa ◽  
Peter Nkedi- Kizza ◽  
Kelly T. Morgan ◽  
Kamal Mahmoud

The aim of this study is to characterize the fertility status of the Dingyadi soils from semiarid Northern Nigeria, by using different methods of extraction to assess the potential for soil available macro and micronutrients to the sorghum crop. The study also compared concentrations of extractable nutrients between extractants for ascertaining the possibility of using one method to quantify a variety of plant-available nutrients in soils. Surface (0-15 cm) and sub-surface (15-30 cm) soil samples were collected along a topo-sequence at Dingyadi Sokoto-Nigeria, where sorghum had been grown, to characterize the soil chemical and physical properties that can influence soil fertility for sorghum production. The topo-sequence consisted of valley floor (TLL1), middle (TUP2), and crest (TUP3) positions of the slope. At each position 60 concentrations of each plant nutrient were used for the comparisons.Soil extraction for nutrients was carried out at the Environmental Soil Physics laboratory, Soil and Water Sciences Department, University of Florida, while analysis of aliquots for the elements was carried out at the Southwest Florida Research and Education Center, Immokalee, Florida. The study was carried out over a period of eight months, in 2016-2017. Soil samples were extracted using different extraction methods (Mehlich-3, Bray-1, Ammonium acetate, and DI-Water). A soil to solution ratio of 1:1 was used across all extraction methods to facilitate comparison between methods. However, a test was carried out to examine the effect of soil to solution ratio of (1:10) on extractable macro nutrients using Mehlich3 for randomly selected soil samples across the topo-sequence. Soil samples were also analyzed for texture, pH, organic matter, and cation exchange capacity (CEC). All soil soils were sandy, low in organic matter content, and CEC.With respect to sorghum production, the soils had adequate nutrients (Mg, Ca, K, and P) and soil pH. All soil samples contained no exchangeable K. Mehlich3 extracted higher available P than Bray1 in TLL1, but equal amounts in TUP2 and TUP3. Good correlations exist between extracting methods for macro nutrients (Mg, Ca, K, and P). Bray1 method used for available P is not suitable for soils that have pH greater than 7 determined in water. Mehlich3 is more suitable for the semiarid soils of Northern Nigeria that are acidic or alkaline. The Mehlich3 method should be calibrated with yield response of crops to substitute for Bray1 available phosphorus. Also, Mehlich3 method could be used for the multi-nutrient test with a good correlation with other methods like ammonium acetate for exchangeable bases.


Sign in / Sign up

Export Citation Format

Share Document