Assessment and Mapping soil fertility status of Potato Super Zone, Kavrepalanchowk

2018 ◽  
Vol 3 (02) ◽  
pp. 108-115
Author(s):  
S. P. Vista ◽  
T. B. Ghimire ◽  
T. S. Rai ◽  
B. S. Kutu ◽  
B. K. Karna

Potato is a staple food crop in high hills and mountains and a major vegetable throughout the country and one of the most important cash generating crops in Nepal. With the efforts undertaken by research and extension sectors, its productivity has significantly increased in last twenty years. However, this is not sufficient for increasing population of the country. Considering its potentiality for income, employment, industrial products, export and processing, appropriate technologies are urgent.Soil fertility evaluation is the most basic decision making tool for the sustainable soil nutrient management. Soil fertility studies and mapping is an effective way to diagnose soil status and recommend as per the need of the nutrient to particular crop in the area. This research aims to assess and prepare soil nutrient map of potato super zone, Kavrepalanchowk in Nepal. The specific objectives of the research were to assess soil texture, pH and organic matter status and simultaneously prepare soil fertility map of the potato super zone. A total of 202 soil samples were collected and nutrients were analyzed using standard procedure in the soil laboratory. Composite soil samples were collected from 6 to 10 different spots of the area at 0-20 cm depth by using soil auger. The GPS location of each soil sampling point was noted. The soil sampling point of each zone was determined by studying various aspects (area, slope, colour, texture, etc.) of the study area. Based on the nutrient status, nutrient maps were prepared and presented. Soil fertility maps were prepared by observing the critical nutrients required for the specific crops and by giving those nutrients certain ranking based on the nutrients role for the crop. The soil of Potato super zone was mostly found to be silty loam, moderately acidic (pH 5.9), medium in organic matter content (2.67%) and total nitrogen (0.13%), high in available phosphorus content (56 kg/ha) and available potassium (356kg/ha). There is also sandy loam, loam and silty clay loam types of soil in the area. Soil fertility maps were prepared by setting criteria based on nutrient status that were tested in the laboratory and on the basis of nutrients that are critical for each crops of the super zones. Vegetable super zone soil was found having medium (50%) and high (30%) fertility status. Based on the soil analysis report, it could be concluded that the soils of potato super zone is fair enough for cultivating potato crop at the moment.

2016 ◽  
Vol 2 (1) ◽  
pp. 43-57 ◽  
Author(s):  
Dinesh Khadka ◽  
Sushil Lamichhane ◽  
Shahabuddin Khan ◽  
Sushila Joshi ◽  
Buddhi Bahadur Pant

Soil test-based fertility management is important for sustainable soil management. This study was carried out to determine the soil fertility status of the Agriculture Research Station, Belachapi, Dhanusha, Nepal. Using soil sampling auger 25 soil samples were collected randomly from a depth of 0-20 cm. Soil sampling points were identified using GPS device. Following standard methods adopted by Soil Science Division laboratory, Khumaltar, the collected soil samples were analyzed to find out their texture, pH, N, P2O5, K2O, Ca, Mg, S, B, Fe, Zn, Cu, Mn and organic matter status. The soil fertility status maps were made using Arc-GIS 10.1 software. The observed data revealed that soil was grayish brown in colour and sub-angular blocky in structure. The sand, silt and clay content were 36.03±3.66%, 50.32±2.52% and 25.42±2.25%, respectively and categorized as eight different classes of texture. The soil was acidic in pH (5.61±0.14). The available sulphur (0.73±0.09 ppm) status was very low, whereas organic matter (1.34±0.07%), available boron (0.56±0.10 ppm), available zinc (0.54±0.22 ppm) and available copper (0.30±0.01 ppm) were low in status. The extractable potassium (95.52±13.37 ppm) and extractable calcium (1264.8±92.80ppm) exhibited medium in status. In addition, available phosphorus (33.25±6.97 ppm), available magnesium (223.20±23.65 ppm) and available manganese (20.50±2.43 ppm) were high in status. Furthermore, available iron (55.80±8.89 ppm) status was very high. To improve the potentiality of crops (maize, rice, wheat etc.) for studied area, future research strategy should be made based on its soil fertility status.


2016 ◽  
Vol 41 (4) ◽  
pp. 735-757 ◽  
Author(s):  
NC Shil ◽  
MA Saleque ◽  
MR Islam ◽  
M Jahiruddin

Laboratory studies on soil fertility evaluation was carried out across major agroecological zones (AEZs) of Bangladesh to know the nutrient status of soils and to relate those with soil properties like pH, organic matter, CEC, and clay content. Thirty five composite soil samples were collected from intensive crop growing sites, which covered 17 AEZs of Bangladesh. After proper processing, the samples were analyzed for texture, pH, organic carbon, CEC, exchangeable cations (K, Ca, Mg and Na), total N, available P and S following standard methods. The textural class of the soils collected from AEZ 12 and 13 appeared to be mostly clay. Clay loam soil was found in AEZ 4, 8, 9, 11, 25 and 28. Loamy soil was seen in AEZ 1 while AEZ 22, 23 and 29 were mostly sandy textured. The results revealed that 65.7% of the tested soil was acidic while 25.7% was alkaline in nature. All the tested soils showed lower pHKCl compared to pHH2O thus possessed negative charge. About 68.6% of the collected soils contained low (1.10-1.70%) level of organic matter, 25.7% soils retained it at medium level (1.71-2.40) and 5.7% soils at very low level (<1.0%). All the tested soils appeared to be deficient (< 0.12%) in nitrogen content. 68.6% soil samples had the low level of available P while only 8.6% retained it an optimum amount. About 80% of the tested soils contained low level of available S (7.9- 14.7 mg kg -1) although coastal regions soils hold higher amount of available S. High CEC (20-38 cmol kg-1) was found in clay rich soils of AEZ 10, 11, 12, and 13. Study revealed that 40% of the collected soils were very low, 31.4% were low, 8.6% each of medium and optimum, and 11.4% contained high level of exchangeable K. The calcareous soils (AEZ 10, 11, 12 and 13) contained very high level of Ca. Non calcareous soils also showed fairly good level of Ca content except AEZ 1, 3, 23 and 29. Sandy textured soils of greater Dinajpur, Rangpur, Moulvibazar showed lower level of exchangeable Mg. About 86% of the tested soils had the lower (< 2%) potassium saturation percentage (KSP), which needs K application for sustainable crop production. Estimate showed that 44% variability for CEC may be attributed by clay content and the relationship was significant (p = 0.05). Again, 50.4 and 65.6% variability in exchangeable K and Mg, respectively may be governed by clay content of the soils, while such relationship for Ca was non-significant. CEC may contribute 62.2, 92.3 and 83.9% variability for exchangeable K, Ca and Mg content in soils, respectively. The fertility status of most of the studied soils (except AEZ 10, 12, 13 and to some extent 11) appeared to be low to very low, which demand judicious management in order to achieve food security and to conserve the soil fertility.Bangladesh J. Agril. Res. 41(4): 735-757, December 2016


2019 ◽  
Vol 14 (3) ◽  
pp. 407
Author(s):  
José Ricardo Mantovani ◽  
José Antônio Lima ◽  
Ciro Pozzi Garcia ◽  
Tiago Teruel Rezende

In soil sampling, the collection site and the tool used may induce errors that can compromise the results of the chemical analysis and, consequently, the definition of corrective and fertilizer doses. The objective in this study was to evaluate soil sampling sites and tools in a coffee growing area. The experiment was carried out in a field in the municipality of Alfenas-MG, in a 35-year coffee field. A randomized block design was used in a 3 x 5 factorial scheme and 4 replications, totaling 60 experimental units. The treatments consisted of 3 sampling sites: in the fertilizer strip (located in the projection of the plant canopy); between rows; and in the total area, with 1/3 of the samples collected under the canopy and close to the plant stem, 1/3 in the canopy projection and 1/3 collected between rows; and 5 sampling tools: Dutch auger; screw auger; probe; hoe and drill. Soil samples were collected at a depth of 0 to 0.2 m, and each composite sample was obtained by assembling and mixing 20 single samples. At each sampling point, an area of 2m<sup>2</sup> was delimited, in which simple samples were collected in all the evaluated places and with all the tools used. The following parameters were determined in the soil samples: pH in CaCl2; potential acidity (H+Al); organic matter; P, extracted by Mehlich; K<sup>+</sup>, Ca<sup>2+</sup>, Mg<sup>2+</sup> and base saturation. In a coffee-growing area, he fertilizer strip (canopy projection) has topsoil with higher acidity and lower contents of organic matter and nutrients P, K<sup>+</sup>, Ca<sup>2+</sup> and Mg<sup>2+</sup> than between rows. The tools used for soil sampling do not influence the results of soil chemical analysis in the coffee-growing area.


2018 ◽  
Vol 5 (3) ◽  
pp. 434-440
Author(s):  
Fitra Syawal Harahap ◽  
Abdul Rauf ◽  
Benny Hidayat ◽  
Hilwa Walida ◽  
Jamidi ◽  
...  

Organic materials in situ remaining paddy crops in paddy fields are much abandoned by farmers. Most of the remaining harvested are burned, stacked in the cultivated, or used for animal feed or as a fungus. Straw compost is source of Potassium (K) and Silica (Si). About 80% of K absorbed by plants is in the straw. The return of straw to the soil may slow the impoverishment of Potassium (K) in the soil. This study aims to find out how the availability of phosphorus (P) and potassium (K) nutrients by giving organic matter as soil fertility status in paddy fields in Beringin Subdistrict, Deli Serdang Regency and to review management alternatives that are in accordance with the soil fertility status in the Central Land Rice fields in Beringin Subdistrict, Deli Serdang Regency. This research was carried out in the Central Rice Field in Beringin Subdistrict, Deli Serdang Regency ± 11 meters above sea level. The taking of soil samples was taken in the upper layer at the top soil depth of 0-20 cm, 20-40 cm and the coordinates were recorded using GPS (Global Positioning System). While information on land management is obtained by direct observation in the field and in-depth interviews with farmers in snow ball which aims to obtain complete information from farmers. Soil samples that have been taken in the field are then analyzed in the laboratory. Soil chemical properties analyzed in laboratory soil chemical properties analyzed at P2O5 Bray II (ppm) laboratory K2O Hcl 25% (mg / 100g). To determine the chemical properties of soil with certain criteria that have been determined. Based on Technical Guidelines for Evaluation of Soil Fertility The direction of management of soil fertility needs to be added to organic matter and phosphorus fertilization regularly so that soil fertility can be sustainable. Further research is needed in order to find out the addition of phosphorus fertilizer and organic matter in each unit of land.


2019 ◽  
Vol 52 (1) ◽  
pp. 23
Author(s):  
Dinesh Khadka ◽  
Sushil Lamichhane ◽  
Parashuram Bhantana ◽  
Amit Prasad Timilsina ◽  
Anisur Rahman Ansari ◽  
...  

<p>Soil fertility evaluation has been considered as a most effective tool for sustainable planning of a particular region. This study was conducted to determine the soil fertility status of the Agricultural Research Station, Pakhribas, Dhankuta, Nepal. The total 60 soil samples were collected randomly at a depth of 0-20 cm by using the soil sampling auger. For identification of soil sampling points A GPS device was used. The collected samples were analyzed for their texture, pH, OM, N, P<sub>2</sub>O<sub>5</sub>, K<sub>2</sub>O, Ca, Mg, S, B, Fe, Zn, Cu and Mn status following standard methods in the laboratory of Soil Science Division, Khumaltar. The Arc-GIS 10.1 software was used for soil fertility maps preparation. The observed data revealed that soil was dark yellowish brown (10YR 4/4) and yellowish brown (10YR 5/6) in colour, and single grained, granular and sub-angular blocky in structure. The sand, silt and clay content were 56.61±0.97%, 27.62±0.56% and 15.77±0.58%, respectively and categorized as loam, sandy loam and sandy clay loam in texture. The soil was very acidic in pH (4.66±0.07) and very low in available sulphur (0.53±0.11mg/kg), available boron (0.24±0.07mg/kg). The organic matter (1.34±0.07%), total nitrogen (0.09±0.003mg/kg), available calcium (605.70±31.40mg/kg), available magnesium (55.96±4.67mg/kg) and available zinc (0.54±0.22mg/kg) were low in status. Similarly, available potassium (115.98±9.19 mg/kg) and available copper (1.13±0.09 mg/kg) were medium in status. Furthermore, available manganese (36.31±2.82mg/kg) was high, whereas available phosphorus (105.07±9.89 mg/kg) and available iron (55.80±8.89 mg/kg) were very high in status. The soil fertility management practice should be adopted based on the determined status in the field for the sustainable production of crops. The future research strategy should be built based on the soil fertility status of the research farm.</p>


2018 ◽  
Vol 6 (2) ◽  
pp. 142-151
Author(s):  
Nabin Rawal ◽  
Keshav Kumar Acharya ◽  
Chet Raj Bam ◽  
Kamal Acharya

Soil fertility degradation has become a major problem for agricultural management in Nepal. A detailed soil fertility status of different VDCs of Sunsari district was investigated during 2015 and soil related crop production constraints were identified for proper utilization of agricultural land. Total 131 numbers of geo-referenced (GPS based) composite surface soil samples (0-15 cm) were collected from eleven Village Development Committees of Sunsari District. The sample points were recorded with a differential global position system and mapped using Geographic Information System (GIS). Soils were analyzed for mechanical composition, pH, organic matter, total nitrogen, available phosphorus, potassium and micronutrients like Boron, Zinc, Copper and Iron. About 38.9% soils were found to be silty clay loam, 20.6% were silty clay, 19.1% were clay loam and 21.4% were of other textural classes. Most of the soils were acidic and only few were neutral and slightly alkaline in nature. Soil Organic matter varies from 3.57% to 0.28% with a mean value of 1.53 %. The mean total nitrogen, available phosphorus, potassium was found to be 0.08%, 44.37 kg/ha and 128.04 kg/ha respectively. The mean hot water extractable Boron, DTPA extractable Copper, Zinc and Iron was found to be 0.14, 0.06, 0.15 and 10.71 mg/kg respectively. Thematic maps were prepared for each soil parameters using ArcGis10.1 software and ordinary Kriging interpolation was used in order to predict values for not sampled locations. The fertility maps provide the readymade source of information about soil fertility status and serve as the decision making tool for successful raising and development of crops. It can be concluded from the above study that GPS and GIS based soil fertility maps helps farmers, scientists, planners and students in providing soil test based fertilizer recommendation for intensive and sustainable site specific crop production.Int. J. Appl. Sci. Biotechnol. Vol 6(2): 142-151 


2021 ◽  
Author(s):  
Martinho A S Martins ◽  
Ana I Machado ◽  
Adriana Xavier ◽  
Ana R Lopes ◽  
Bruna R F Oliveira ◽  
...  

&lt;p&gt;In recent decades, the establishment of monospecific tree plantations has increased markedly. Such changes in land use may have important implications for soil properties and functions. At present, the most common monospecific tree plantations worldwide are those of eucalypt, and they have been reported to negatively affect soil functions such as carbon sequestration and soil biodiversity (macroinvertebrates). This has been attributed, at least in part, to the practice of soil mobilization prior to tree planting. Arguably, the construction of bench terraces for installing eucalypt plantation is an extreme form of soil mobilization and has become increasingly common in Central Portugal, including to facilitate forestry operations on steep slopes such as the planting itself, the application of agrichemicals for fertilization and weed control, mechanical control of the understory fuel load, and the logging and extraction of wood. While bench terracing is a technique that aims at soil and water conservation on steep slopes that are otherwise very hard to cultivate, its effectiveness has been poorly studied. Considerable rates of splash erosion have been reported on the terraces themselves during the initial period after their construction, and so have elevates rates of water erosion on steep tracks. &amp;#160;Slope-scale soil losses, however, are difficult to quantify, even using erosion survey methods due to the fast growth of the eucalypts. While the same is true for the associated fertility losses, the main impact of bench terracing on topsoil fertility may results from the - massive -redistribution and inversion of the soil layers up to depths of 30 cm and more. This study aimed to quantify this direct effect of bench terracing on soil nutrient status. To this end, a 10 ha forest land property was sampled before and immediately after bench terracing during summer 2019. Before bench terracing, on 4th of April 2019, soil sampling was carried out at 5 points along a transect of 100 m centred on the middle section of a South-East facing slope; after bench terracing, on 23rd July 2019, soil sampling was carried out on 5 terraces on the same slope section, separated from each other by 1 terrace. Before bench terracing, the O layer, and the 0-10 cm (A horizon) and 15-20 (B horizon) mineral soil depths were sampled at each transect point; after terracing, the 0-20 cm of mixed mineral soil depths were sampled at each terrace. The mineral soil samples were analysed with respect to PMN and HCW as well as total C, N and P. The results showed clear differences between the nutrient status of the mineral soils before and after bench terracing. The construction of bench terraces diminished all soil nutrient analysed, this not only affected the stock of soil major nutrients, but also strongly affect the labile and plant available fractions. Therefore, terracing has immediately implications in soil fertility and may impose important limitations in the kye ecological functions of forest soil such as nutrient cycling, storage and turnover.&lt;/p&gt;


2021 ◽  
Vol 13 (7) ◽  
pp. 3957
Author(s):  
Yingying Xing ◽  
Ning Wang ◽  
Xiaoli Niu ◽  
Wenting Jiang ◽  
Xiukang Wang

Soil nutrients are essential nutrients provided by soil for plant growth. Most researchers focus on the coupling effect of nutrients with potato yield and quality. There are few studies on the evaluation of soil nutrients in potato fields. The purpose of this study is to investigate the soil nutrients of potato farmland and the soil vertical nutrient distributions, and then to provide a theoretical and experimental basis for the fertilizer management practices for potatoes in Loess Plateau. Eight physical and chemical soil indexes were selected in the study area, and 810 farmland soil samples from the potato agriculture product areas were analyzed in Northern Shaanxi. The paper established the minimum data set (MDS) for the quality diagnosis of the cultivated layer for farmland by principal component analysis (PCA), respectively, and furthermore, analyzed the soil nutrient characteristics of the cultivated layer adopted soil quality index (SQI). The results showed that the MDS on soil quality diagnosis of the cultivated layer for farmland soil included such indicators as the soil organic matter content, soil available potassium content, and soil available phosphorus content. The comprehensive index value of the soil quality was between 0.064 and 0.302. The SPSS average clustering process used to classify SQI was divided into three grades: class I (36.2%) was defined as suitable soil fertility (SQI < 0.122), class II (55.6%) was defined as moderate soil fertility (0.122 < SQI < 0.18), and class III (8.2%) was defined as poor soil fertility (SQI > 0.186). The comprehensive quality of the potato farmland soils was generally low. The proportion of soil nutrients in the SQI composition ranged from large to small as the soil available potassium content = soil available phosphorus content > soil organic matter content, which became the limiting factor of the soil organic matter content in this area. This study revolves around the 0 to 60 cm soil layer; the soil fertility decreased gradually with the soil depth, and had significant differences between the respective soil layers. In order to improve the soil nutrient accumulation and potato yield in potato farmland in northern Shaanxi, it is suggested to increase the fertilization depth (20 to 40 cm) and further study the ratio of nitrogen, phosphorus, and potassium fertilizer.


2021 ◽  
Author(s):  
Emma Hayes ◽  
Suzanne Higgins ◽  
Donal Mullan ◽  
Josie Geris

&lt;p&gt;The EU Water Framework Directive (WFD) aims to target prevalent poor water quality status. Of the various contributing sources agriculture is particularly important due to the high loading rates of sediment and nutrient losses associated with fertilisation, sowing, and cropping regimes. Understanding soil nutrient status and the potential pathways for nutrient loss either through point or diffuse sources is an important step to improve water quality from an agricultural perspective. Research has demonstrated extensive in-field variability in soil nutrient status. A sampling regime that explores this variability at a sub-field scale is necessary. Traditional soil sampling consists of taking 20-30 cores per field in a W-shaped formation to produce a single bulked core, however, it generally fails to locate nutrient hotspots at finer resolutions. Inappropriate generalised fertilisation and management recommendations can be made in which nutrient hotspots or deficient zones are overlooked. Gridded soil sampling can reveal the full degree of in-field variability in nutrient status to inform more precise and site-specific nutrient applications. High soil phosphorus levels and the concept of legacy nutrient accumulation due to long-term over-application of phosphorus fertiliser in addition to animal slurry is a problem across the island of Ireland.&lt;/p&gt;&lt;p&gt;This research aims to locate and quantify the presence of soil nutrient hotspots at several field-scale locations in the cross-border Blackwater catchment in Northern Ireland / Republic of Ireland. Based on 35 m sampling grids, the nutrient content at unsampled locations in each field was determined using GIS interpolation techniques. Particular attention was paid to phosphorus, given its role in eutrophication. Gridded soil sampling enables the identification of nutrient hotspots within fields and when combined with an analysis of their location in relation to in-field landscape characteristics and knowledge of current management regimes, the risk of nutrient or sediment loss potential may be defined. This research concluded that traditional W soil sampling of producing one average value per field is not appropriate to uncover the degree of spatial variability in nutrient status and is inappropriate for catchment management of agricultural systems for controlling nutrient losses. Soil sampling at multiple locations per field is deemed to be cost-prohibitive for many farmers. However, sub-field scale soil sampling and appropriate geostatistical interpolation techniques can reveal the degree of variability and suggest an appropriate resolution for field-scale nutrient management that may be necessary to achieve measurable improvements in water quality.&lt;/p&gt;


2014 ◽  
Vol 1 (2) ◽  
pp. 81
Author(s):  
Lutfi Izhar ◽  
Anas D. Susila

<p>ABSTRACT</p><p><br />Vegetables are important agricultural commodities. Productivity of vegetables in Indonesia is still low. One effort that can be done is an application of specific fertilizer recommendations. Fertilizer recommendation based on soil analysis is still rarely for vegetable crops and need further development. The purpose of this paper is to describe some fertilizer recommendations based on soil analysis for vegetable crops. Three stages to consider in the assessment of the research such as soil incubation, correlation test, calibration test and fertilizer <br />recommendation statue. Application all this stages of soil method recommendation in Indonesia is still not widely applied. Two researches which were completed until the entire stage has been done for yard long beans and <br />tomatoes. Recommendations for tomatoes on Inceptisols soil type with very low nutrient status of soil K was 180 kg K2O ha- 1, a low K soil nutrient status was 131.4 kg K2O ha-1, soil K nutrient status was 82.2 kg K 2O ha-1. Yard <br />long bean that planted on Ultisol soil type with low soil P nutrient status was recommended by an application of 185.8 kg P2O5 ha-1, medium soil P nutrient status was added 174.9 kg P2O5 ha-1. Development of fertilizer recommendation based on soil testing to support agricultural development in Indonesia still has some problems and need some strategies for further research, application and dissemination in the future.</p><p>Key words: vegetables, soil test, fertilizer recommendation</p>


Sign in / Sign up

Export Citation Format

Share Document