scholarly journals Karnali Cable-Stayed Bridge: Development of Finite Element Model and Free Vibration Analysis

2014 ◽  
Vol 10 (1) ◽  
pp. 14-24
Author(s):  
Bipin Shrestha

This paper describes an analytical investigation on Karnali cable stayed bridge across the Karnali River. The primary objective of the investigation is to develop a three dimensional finite element model capable of representing essential feature of the long span cable-stayed bridge. Various parametric studies on the simple cable-stayed bridge model are performed before the actual development of a complex three dimensional model. Deformed equilibrium configuration due to the dead load is calculated using the cable tension and applied dead loads. Importance of incorporating large displacement geometric nonlinearity during the dead load deformed equilibrium configuration is analyzed .Starting from the deformed equilibrium configuration; modal analysis of the bridge is carried out. Different observed modes are classified based on the dominant modal components. Comparisons of the global modal behavior using the two separate models utilizing different cable modeling techniques are made. Parametric study on effect of cable local vibration and the modeling of deck concrete of the composite deck on overall global modal characteristics is presented.  DOI: http://dx.doi.org/10.3126/jie.v10i1.10873Journal of the Institute of Engineering, Vol. 10, No. 1, 2014 pp. 14-24

2019 ◽  
Vol 12 (4) ◽  
pp. 67-72
Author(s):  
Haneen A. Mahmood ◽  
Zaid S. Hammoudi ◽  
Ali Laftah Abbas

A delicate analysis of the natural frequencies and mode shapes of a cable stayed bridge is essential to the solution of its dynamic responses due to seismic, wind and traffic loads. In this paper, a bridge with geometry comparable to the Quincy Bayview Bridge was modelled in order to explore the significance of the three dimensional and free vibration analysis. This paper provides a detail of the bridge and the equivalent cross section of the three-dimensional finite element model implicating cables, the bridge deck and pylons as well as the boundary conditions and free vibration analysis by Ansys15.0. The bridge was analyzed to free vibration to obtaine the natural frequency and mode shape. result of this paper present the natural frequencies and mode shapes of the bridge. The method of modelling cables is also studied. It is found that modelling cables as multi beam elements provides better results than using the traditional (and simpler) method of modeling them as single tensile elements.


1996 ◽  
Vol 24 (4) ◽  
pp. 339-348 ◽  
Author(s):  
R. M. V. Pidaparti

Abstract A three-dimensional (3D) beam finite element model was developed to investigate the torsional stiffness of a twisted steel-reinforced cord-rubber belt structure. The present 3D beam element takes into account the coupled extension, bending, and twisting deformations characteristic of the complex behavior of cord-rubber composite structures. The extension-twisting coupling due to the twisted nature of the cords was also considered in the finite element model. The results of torsional stiffness obtained from the finite element analysis for twisted cords and the two-ply steel cord-rubber belt structure are compared to the experimental data and other alternate solutions available in the literature. The effects of cord orientation, anisotropy, and rubber core surrounding the twisted cords on the torsional stiffness properties are presented and discussed.


1985 ◽  
Vol 52 (4) ◽  
pp. 801-805 ◽  
Author(s):  
P. R. Heyliger ◽  
J. N. Reddy

A quasi-three dimensional elasticity formulation and associated finite element model for the stress analysis of symmetric laminates with free-edge cap reinforcement are described. Numerical results are presented to show the effect of the reinforcement on the reduction of free-edge stresses. It is observed that the interlaminar normal stresses are reduced considerably more than the interlaminar shear stresses due to the free-edge reinforcement.


Author(s):  
A Ktari ◽  
A Abdelkefi ◽  
N Guermazi ◽  
P Malecot ◽  
N Boudeau

During tube hydroforming process, the friction conditions between the tube and the die have a great importance on the material plastic flow and the distribution of residual stresses of the final component. Indeed, a three-dimensional finite element model of a tube hydroforming process in the case of square section die has been performed, using dynamic and static approaches, to study the effect of the friction conditions on both plastic flow and residual stresses induced by the process. First, a comparative study between numerical and experimental results has been carried out to validate the finite element model. After that, various coefficients of friction were considered to study their effect on the thinning phenomenon and the residual stresses distribution. Different points have been retained from this study. The thinning is located in the transition zone cited between the straight wall and the corner zones of hydroformed tube due to the die–tube contact conditions changes during the process. In addition, it is clear that both die–tube friction conditions and the tube bending effects, which occurs respectively in the tube straight wall and corner zones, are the principal causes of the obtained residual stresses distribution along the tube cross-section.


Sign in / Sign up

Export Citation Format

Share Document