scholarly journals A Mathematical Study of Effect of Humidity on Human Skin Temperature at Warm Environment

2021 ◽  
Vol 16 (1) ◽  
pp. 141-150
Author(s):  
Shiva Hari Subedi

The ability of the human body to regulate its heat exchange depends on various environmental factors together with its ability to exchange heat in in-vivo tissue. The environmental factor humidity plays a crucial role in heat regulation within the human body. The heat regulation within in-vivo tissue constitutes temperature regulation in the layers of the dermal part to maintain body core temperature constant. The purpose of this article is to develop a mathematical model to study the effect of humidity on temperature regulation within the human body. The model has been developed for one dimensional steady state flow of heat in human dermal parts with appropriate boundary conditions containing the factors of effect of humidity. Matlab program has been used to simulate the model and obtain numerical results with graphs.

2003 ◽  
Vol 95 (6) ◽  
pp. 2598-2603 ◽  
Author(s):  
W. Larry Kenney ◽  
Thayne A. Munce

This mini-review focuses on the effects of aging on human temperature regulation. Although comprehensive reviews have been published on this topic (Kenney WL. Exercise and Sport Sciences Reviews, Baltimore: Williams & Wilkins, 1997, p. 41-76; Pandolf KB. Exp Aging Res 17: 189-204, 1991; Van Someren EJ, Raymann RJ, Scherder EJ, Daanen HA, and Swaab DF. Ageing Res Rev 1: 721-778, 2002; and Young AJ. Exp Aging Res 17: 205-213, 1991), this mini-review concisely summarizes the present state of knowledge about human temperature regulation and aging in thermoneutral conditions, as well as during hypo- and hyperthermic challenges. First, we discuss age-related effects on baseline body core temperature and phasing rhythms of the circadian temperature cycle. We then examine the altered physiological responses to cold stress that result from aging, including attenuated peripheral vasoconstriction and reduced cold-induced metabolic heat production. Finally, we present the age-related changes in sweating and cardiovascular function associated with heat stress. Although epidemiological evidence of increased mortality among older adults from hypo- and hyperthermia exists, this outcome does not reflect an inability to thermoregulate with advanced age. In fact, studies that have attempted to separate the effects of chronological age from concurrent factors, such as fitness level, body composition, and the effects of chronic disease, have shown that thermal tolerance appears to be minimally compromised by age.


2011 ◽  
Vol 2011 ◽  
pp. 1-4
Author(s):  
Marko Fiege ◽  
Ralf Weisshorn ◽  
Kerstin Kolodzie ◽  
Frank Wappler ◽  
Mark U. Gerbershagen

Background. Theophylline was shown to induce contracture development in porcine malignant hyperthermia (MH) susceptible (MHS) skeletal muscles in vitro. The purpose of the current study was to investigate the in vivo effects of theophylline in MHS and MH normal (MHN) swine.Methods. MH-trigger-free general anesthesia was performed in MHS and MHN swine. Theophylline was administered intravenously in cumulative doses up to 93.5 mg⋅kg-1. The clinical occurrence of MH was defined by changes of central-venous pCO2, central-venous pH, and body core temperature.Results. Theophylline induced comparable clinical alterations in the anesthetized MHS and MHN swine, especially in regard to hemodynamic data. No pig developed hypermetabolism and/or MH according to defined criteria. All animals died with tachycardia followed by ventricular fibrillation.Conclusions. The cumulative theophylline doses used in this study were much higher than doses used therapeutically in humans, as demonstrated by measured blood concentrations. Theophylline is thus not a trigger of MH in genetically determined swine.


2013 ◽  
Vol 24 (9) ◽  
pp. 2223-2234 ◽  
Author(s):  
Elias Volkmer ◽  
Uta Leicht ◽  
Martina Moritz ◽  
Christina Schwarz ◽  
Hinrich Wiese ◽  
...  

Animals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 1084
Author(s):  
Jared Ruff ◽  
Guillermo Tellez ◽  
Aaron J. Forga ◽  
Roberto Señas-Cuesta ◽  
Christine N. Vuong ◽  
...  

The objective of the present research was to assess the dietary supplementation of three formulations of essential oils (EO) in chickens under heat stress (HS). Day-of-hatch Cobb 500 chicks (n = 500) were randomly distributed into four groups: 1. HS control + control diets; 2. HS + control diets supplemented with 37 ppm EO of Lippia origanoides (LO); 3. HS + control diets supplemented with 45 ppm LO + 45 ppm EO of Rosmarinus officinalis (RO) + 300 ppm red beetroot; 4. HS + 45 ppm LO + 45 ppm RO + 300 ppm natural betaine. Chickens that received the EO showed significant (p < 0.05) improvement on BW, BWG, FI, and FCR compared to control HS chickens. Average body core temperature in group 3 and group 4 was significantly (p < 0.05) reduced compared with the HS control group and group 2. Experimental groups showed a significant reduction in FITC-d at 42 days, a significant increase in SOD at both days but a significant reduction of IFN-γ and IgA compared with HS control (p < 0.05). Bone mineralization was significantly improved by EO treatments (p < 0.05). Together these data suggest that supplemental dietary EO may reduce the harmful effects of HS.


2017 ◽  
Vol 14 (9) ◽  
pp. 703-711 ◽  
Author(s):  
Dallon T. Lamarche ◽  
Robert D. Meade ◽  
Andrew W. D'Souza ◽  
Andreas D. Flouris ◽  
Stephen G. Hardcastle ◽  
...  

1981 ◽  
Vol 211 (1184) ◽  
pp. 305-319 ◽  

We have found that camels can reduce the water loss due to evaporation from the respiratory tract in two ways: (1) by decreasing the temperature of the exhaled air and (2) by removal of water vapour from this air, resulting in the exhalation of air at less than 100% relative humidity (r. h.). Camels were kept under desert conditions and deprived of drinking water. In the daytime the exhaled air was at or near body core temperature, while in the cooler night exhaled air was at or near ambient air temperature. In the daytime the exhaled air was fully saturated, but at night its humidity might fall to approximately 75% r. h. The combination of cooling and desaturation can provide a saving of water of 60% relative to exhalation of saturated air at body temperature. The mechanism responsible for cooling of the exhaled air is a simple heat exchange between the respiratory air and the surfaces of the nasal passageways. On inhalation these surfaces are cooled by the air passing over them, and on exhalation heat from the exhaled air is given off to these cooler surfaces. The mechanism responsible for desaturation of the air appears to depend on the hygroscopic properties of the nasal surfaces when the camel is dehydrated. The surfaces give off water vapour during inhalation and take up water from the respiratory air during exhalation. We have used a simple mechanical model to demonstrate the effectiveness of this mechanism.


Sign in / Sign up

Export Citation Format

Share Document