scholarly journals Parameter Estimation of Inverse Rayleigh Distribution under Competing Risk Model for Masked data

2015 ◽  
Vol 20 (2) ◽  
pp. 122-127 ◽  
Author(s):  
M.S. Panwar ◽  
Bapat Akanshya Sudhir ◽  
Rashmi Bundel ◽  
Sanjeev K. Tomer

This paper tries to derive maximum likelihood estimators (MLEs) for the parameters of the inverse Rayleigh distribution (IRD) when the observed data is masked. MLEs, asymptotic confidence intervals (ACIs) and boot-p confidence intervals (boot-p CIs) for the lifetime parameters have been discussed. The simulation illustrations provided that as the sample size increases the estimated value approaches to the true value, and the mean square error decreases with the increase in sample size, and mean square error increases with increase in level of masking, the ACIs are always symmetric and the boot-p CIs approaches to symmetry as the sample size increases whereas the mean life time due to the local spread of the disease is less than that due to the metastasis spread in case of real data set.Journal of Institute of Science and Technology, 2015, 20(2): 122-127

2013 ◽  
Vol 295-298 ◽  
pp. 2409-2414
Author(s):  
Jun Liang Yang ◽  
He Sheng Zhang

In measurement data processing, tiny disturbance of the design matrix can enlarge the deviation between least squares estimation solution and true value and the solution distortion arises. By choosing the reasonable parameters according to the regularization method, and Under the constraints of two indicators which are the mean square error and the estimating efficiency,disturb the observation data by varying degrees on the design matrix to determine the relationship between regularization method and ill-conditioned problem in measurement data processing.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Yesi Santika ◽  
◽  
Widiarti Widiarti ◽  
Fitriani Fitriani ◽  
Mustofa Usman ◽  
...  

Small area estimation is defined as a statistical technique for estimating the parameters of a subpopulation with a small sample size. One method of estimating small area parameters is the Empirical Bayes (EB) method. The accuracy of the Empirical Bayes (EB) estimator can be measured by evaluating the Mean Squared Error (MSE). In this study, 3 methods to determine MSE in the EB estimator of the Beta-Bernoulli model will be compared, namely the Bootstrap, Jackknife Jiang and Area-specific Jackknife methods. The study is carried out theoretically and empirically through simulation with R-studio software version 1.2.5033. The simulation results in a number of areas and pairs of prior distribution parameter values, namely Beta, show the effect of sample size and parameter value pairs on the Mean Square Error (MSE) value. The larger the number of areas and the smaller the initial 𝛽, the smaller the MSE value. The area-specific Jackknife method produces the smallest MSE in the number of areas 100 and the Beta parameter value 0.1.


1998 ◽  
Vol 44 (11) ◽  
pp. 2353-2358 ◽  
Author(s):  
Arja Virtanen ◽  
Veli Kairisto ◽  
Esa Uusipaikka

Abstract Regression analysis is the method of choice for the production of covariate-dependent reference limits. There are currently no recommendations on what sample size should be used when regression-based reference limits and confidence intervals are calculated. In this study we used Monte Carlo simulation to study a reference sample group of 374 age-dependent hemoglobin values. From this sample, 5000 random subsamples, with replacement, were constructed with 10–220 observations per sample. Regression analysis was used to estimate age-dependent 95% reference intervals for hemoglobin concentrations and erythrocyte counts. The maximum difference between mean values of the root mean square error and original values for hemoglobin was 0.05 g/L when the sample size was ≥60. The parameter estimators and width of reference intervals changed negligibly from the values calculated from the original sample regardless of what sample size was used. SDs and CVs for these factors changed rapidly up to a sample size of 30; after that changes were smaller. The largest and smallest absolute differences in root mean square error and width of reference interval between sample values and values calculated from the original sample were also evaluated. As expected, differences were largest in small sample sizes, and as sample size increased differences decreased. To obtain appropriate reference limits and confidence intervals, we propose the following scheme: (a) check whether the assumptions of regression analysis can be fulfilled with/without transformation of data; (b) check that the value of v, which describes how the covariate value is situated in relation to both the mean value and the spread of the covariate values, does not exceed 0.1 at minimum and maximum covariate positions; and (c) if steps 1 and 2 can be accepted, the reference limits with confidence intervals can be produced by regression analysis, and the minimum acceptable sample size will be ∼70.


1978 ◽  
Vol 48 ◽  
pp. 227-228
Author(s):  
Y. Requième

In spite of important delays in the initial planning, the full automation of the Bordeaux meridian circle is progressing well and will be ready for regular observations by the middle of the next year. It is expected that the mean square error for one observation will be about ±0.”10 in the two coordinates for declinations up to 87°.


2018 ◽  
Vol 934 (4) ◽  
pp. 59-62
Author(s):  
V.I. Salnikov

The question of calculating the limiting values of residuals in geodesic constructions is considered in the case when the limiting value for measurement errors is assumed equal to 3m, ie ∆рred = 3m, where m is the mean square error of the measurement. Larger errors are rejected. At present, the limiting value for the residual is calculated by the formula 3m√n, where n is the number of measurements. The article draws attention to two contradictions between theory and practice arising from the use of this formula. First, the formula is derived from the classical law of the normal Gaussian distribution, and it is applied to the truncated law of the normal distribution. And, secondly, as shown in [1], when ∆рred = 2m, the sums of errors naturally take the value equal to ?pred, after which the number of errors in the sum starts anew. This article establishes its validity for ∆рred = 3m. A table of comparative values of the tolerances valid and recommended for more stringent ones is given. The article gives a graph of applied and recommended tolerances for ∆рred = 3m.


Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1631
Author(s):  
Bruno Guilherme Martini ◽  
Gilson Augusto Helfer ◽  
Jorge Luis Victória Barbosa ◽  
Regina Célia Espinosa Modolo ◽  
Marcio Rosa da Silva ◽  
...  

The application of ubiquitous computing has increased in recent years, especially due to the development of technologies such as mobile computing, more accurate sensors, and specific protocols for the Internet of Things (IoT). One of the trends in this area of research is the use of context awareness. In agriculture, the context involves the environment, for example, the conditions found inside a greenhouse. Recently, a series of studies have proposed the use of sensors to monitor production and/or the use of cameras to obtain information about cultivation, providing data, reminders, and alerts to farmers. This article proposes a computational model for indoor agriculture called IndoorPlant. The model uses the analysis of context histories to provide intelligent generic services, such as predicting productivity, indicating problems that cultivation may suffer, and giving suggestions for improvements in greenhouse parameters. IndoorPlant was tested in three scenarios of the daily life of farmers with hydroponic production data that were obtained during seven months of cultivation of radicchio, lettuce, and arugula. Finally, the article presents the results obtained through intelligent services that use context histories. The scenarios used services to recommend improvements in cultivation, profiles and, finally, prediction of the cultivation time of radicchio, lettuce, and arugula using the partial least squares (PLS) regression technique. The prediction results were relevant since the following values were obtained: 0.96 (R2, coefficient of determination), 1.06 (RMSEC, square root of the mean square error of calibration), and 1.94 (RMSECV, square root of the mean square error of cross validation) for radicchio; 0.95 (R2), 1.37 (RMSEC), and 3.31 (RMSECV) for lettuce; 0.93 (R2), 1.10 (RMSEC), and 1.89 (RMSECV) for arugula. Eight farmers with different functions on the farm filled out a survey based on the technology acceptance model (TAM). The results showed 92% acceptance regarding utility and 98% acceptance for ease of use.


Sign in / Sign up

Export Citation Format

Share Document