scholarly journals Genotype × Environment Interaction and Stability Analysis for Grain Yield of Mid-hill Rice Genotypes

2014 ◽  
Vol 8 ◽  
pp. 14-17 ◽  
Author(s):  
Hari K. Upreti ◽  
Sudarshan Bista ◽  
Surya N. Sah ◽  
Ramesh Dhakal

Genotype x Environment interaction limits the effectiveness of selection when selection is based only on mean yield. This G × E interaction was studied for grain yield in 7 genotypes  of mid-hill rice in five different environments across the Nepal. Significant difference was observed among genotype (G), environment (E) and interaction (G × E) but could not identify the stable high yielding genotypes for diverse environments. Therefore, stability parameters were calculated and analyzed. On the basis of stability parameters, two genotypes, NR 10414, NR 10492 and NR 10515 were found to be most stable over different environments. NR 10353 was identified as suitable genotypes with high grain yield for favorable environment.Nepal Agric. Res. J. Vol. 8, 2007, pp. 14-17DOI: http://dx.doi.org/10.3126/narj.v8i0.11565

2017 ◽  
Vol 3 (1) ◽  
pp. 38-43
Author(s):  
Md Saleh Uddin ◽  
Md Sultan Alam ◽  
Nasrin Jahan ◽  
Kazi Md Wayaz Hossain ◽  
Md Ali Newaz

Genotypes x environment interaction as well as stability of performance were determined for grain yield and yield contributes of 12 wheat genotypes under four salinity levels of environments (control, 8, 12, 16 dS/m). Significant genotype-environment interaction (linear) for days to heading, plant height, number of spikes per plant and grains per spikes, 1000-grain weight and grain yield per plant at 1% level of probability when tested against pooled deviation. Both the environment (linear) and genotype x environment (linear) components of variation for stability were also significant indicating that prediction of the genotypes on the environment appeared feasible for all the characters. The variance due to pooled deviation was significant for only days to heading. Considering all the three stability parameter, genotype G11 was found most stable among all the genotypes for grain weight of wheat. Among the genotypes G11, G22, G24, G33 and G40 were most desirable for yield per plant. The genotype G32 showed more responsiveness to changing environment and was suited only for highly favorable environments. Based on three stability parameters, G11, G22 and G37 were the most stable and desirable genotypes with reasonable good yield among the all.Asian J. Med. Biol. Res. March 2017, 3(1): 38-43


Agronomy ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2136
Author(s):  
Mohammad Rafiqul Islam ◽  
Bikas Chandra Sarker ◽  
Mohammad Ashraful Alam ◽  
Talha Javed ◽  
Mohammad Jahangir Alam ◽  
...  

Water deficit stress is a critical abiotic constraint to mung bean production that affects plant growth and development and finally reduces crop yield. Therefore, a field experiment was conducted at five diverse environments using four water stress-tolerant genotypes, namely BARI Mung-8, BMX-08010-2, BMX-010015, and BMX-08009-7, along with two popular cultivated varieties (check) of BARI Mung-6 and BARI Mung-7 to evaluate more stable tolerant genotypes across the country. Stability analysis was performed based on the grain yield. The combined analysis of variance showed significant variations among genotypes, environments, and their interactions. The AMMI analysis of variance indicated that genotype accounted for 91% of the total sum of squares for grain yield, followed by genotype × environment interaction (5%), and environment (4%). Partitioning of interaction indicated that the first three interaction principal components (IPCA1–IPCA3) were highly significant (p ≤ 0.01). Using these significant IPCAs, AMMI stability parameters and non-parameter indices BMX-010015 was found stable across the environment based on yield traits and grain yield. The BMX-08010-2 genotype also showed significant regression coefficient (bi) more than unity, and non-significant deviation from regression (S2di) values, indicating suitable for a favorable environment considering grain yield. So, based on the stability analysis (Eberhart and Russell), additive main effects, and multiplicative interactions (AMMI) analysis, the BMX-010015 and BMX-08010-2 could be suitable for having tolerance to water deficit stress.


Author(s):  
B. Arunkumar ◽  
E. Gangapp ◽  
S. Ramesh ◽  
D. L. Savithramma ◽  
N. Nagaraju ◽  
...  

A genotype is considered to be most adaptive / stable, when it registers high mean yield but show a minimum interaction with the environment. Knowledge of genotype × environment interaction and yield stability are important parameters in breeding new cultivars with improved adaptation to environmental constraints prevailing in the target environments. Therefore, an effort was made to know the genotype - environment interaction and to identify stable single cross hybrids across the environments. Eight newly synthesized single cross maize hybrids and 7 checks were evaluated in a Randomized Block Design with three replications during Rabi-2016 across three locations spread over different agro-climatic zones of Karnataka state, India. Different stability parameters as suggested by Eberhart and Russell [1] were estimated. Joint analysis of variance revealed significant differences among environments, hybrids and environments × hybrids interactions advocating the adequacy of stability analysis. Hybrids, viz., MAI 349×MAI 283, KDMI 16×BGUDI 118 were stable for days to anthesis and silking, respectively. Whereas, hybrids viz., KDMI 16×BGUDI 118, BGUDI 120×VL 109252 and MAI 283× KDMI 16 registered mean values lower than the overall mean with bi value nearer to unity and non significant S2di for anthesis silking interval. Hybrid, MAI 349×MAI 283 for plant height and cob length, KDMI 16×MAI 283 for cob length, number of kernel rows-1 and 100 grain weight, BGUDI 88×MAI 349 for cob diameter, MAI 394×BGUDI 88  for shelling % and KDMI 16×BGUDI 118 for grain yield plant-1 registered stable performance across the environments. Based on the positive and negative environmental indices, production environment at location 1 (K Block UAS, GKVK, Bengaluru), was most favorable for expression of majority of characters studied. Hybrid KDMI 16×MAI 283 was found stable across the environments for most of the characters studied.


2015 ◽  
Vol 21 ◽  
pp. 41-48
Author(s):  
Gebremedhin Welu

The objective of this experiment was to estimate the magnitude of genotype X environment interaction on grain yield and yield related traits. Twelve varieties of food barley were included in the study planted in randomized complete block design with three replications. The ANOVA of combined and individual location revealed significant differences among the food barley genotypes for grain yield and other traits. The results of ANOVA for grain yield showed highly significant (p≤0.01) differences among genotypes evaluated for grain yield at Maychew and significant (p≤0.05) differences in Korem, Alage and Mugulat. The ANOVA over locations showed a highly significant (p≤0.01) variation for the genotype effect, environment effects, genotype X environment interaction (GEI) effect and significant (p≤0.05) variation for GEI effect of yield and for most of the yield related traits of food barley genotypes. Haftysene, Yidogit, Estayish and Basso were the genotypes with relatively high mean grain yield across all locations and they are highly performing genotypes to the area. Among locations, the highest mean grain yield was recorded at Korem and it was a suited environment to all the genotypes whereas Mugulat is unfavoured one. ECOPRINT 21: 41-48, 2014DOI: http://dx.doi.org/10.3126/eco.v21i0.11903


Sign in / Sign up

Export Citation Format

Share Document