stability parameters
Recently Published Documents


TOTAL DOCUMENTS

497
(FIVE YEARS 165)

H-INDEX

26
(FIVE YEARS 4)

Author(s):  
Charifa Haouraji ◽  
Badia Mounir ◽  
Ilham Mounir ◽  
Laila Elmazouzi ◽  
Abdelmajid Farchi

In a comprehensive LMDI-STIRPAT-ARDL framework, this research investigates the residential electricity consumption (REC)-income nexus in Morocco for the period 1990 to 2018. The logarithmic mean Divisia index (LMDI) results show that economic activity and electricity intensity are the leading drivers of Morocco’s REC, followed by population and residential structure. And then, the LMDI analysis was combined with stochastic impacts by regression on population, affluence, and technology (STIRPAT) analysis and the bounds testing approach to search for a long-run equilibrium relationship. The empirical results show that REC, economic growth, urbanization, and electricity intensity are cointegrated. The results further show that there exists a U-shaped relationship between per capita gross domestic product (GDP) and REC: an increase in per capita GDP reduces REC initially; but, after reaching a turning point (the GDPPC level of 17,145.22 Dh), further increases in per capita GDP increase REC. Regarding urbanization, the results reveal that it has no significant impact on Morocco’s REC. The stability parameters of the short and long-term coefficients of residential electricity demand function are tested. The results of these tests showed a stable pattern. Finally, based on the findings mentioned above, policy implications for guiding the country's development and electricity planning under energy and environmental constraints are given.


2022 ◽  
Vol 12 ◽  
Author(s):  
N. Anuradha ◽  
T. S. S. K. Patro ◽  
Ashok Singamsetti ◽  
Y. Sandhya Rani ◽  
U. Triveni ◽  
...  

Finger millet, an orphan crop, possesses immense potential in mitigating climate change and could offer threefold security in terms of food, fodder, and nutrition. It is mostly cultivated as a subsistence crop in the marginal areas of plains and hills. Considering the changes in climate inclusive of recurrent weather vagaries witnessed every year, it is crucial to select stable, high-yielding, area-specific, finger millet cultivars. Sixty finger millet varieties released across the country were evaluated over six consecutive rainy seasons from 2011 to 2016 at the Agricultural Research Station, Vizianagaram. The genotype × environment interaction (GEI) was found to be significant in the combined ANOVA. Furthermore, the Additive Main effects and Multiplicative Interaction (AMMI) analysis asserted that genotypes and the GEI effects accounted for approximately 89% of the total variation. Strong positive associations were observed in an estimated set of eleven stability parameters which were chosen to identify stable genotypes. Furthermore, Non-parametric and Parametric Simultaneous Selection indices (NP-SSI and P-SSI) were calculated utilizing AMMI-based stability parameter (ASTAB), modified AMMI stability value (MASV), and Modified AMMI Stability Index (MASI) to identify stable high yielders. Both methods had inherent difficulties in ranking genotypes for SSI. To overcome this, the initial culling [i.e., SSI with culling strategy (C-SSI)] of genotypes was introduced for stability. In the C-SSI method, the top ten genotypes were above-average yielders, while those with below-average yield were observed in NP-SSI and P-SSI methods. Similarly, the estimation of best linear unbiased prediction (BLUP)-based simultaneous selections, such as harmonic mean of genotypic values (HMGV), relative performance of genotypic values (RPGV), and harmonic mean of relative performance of genotypic values (HMRPGV), revealed that none of the top ten entries had below-average yield. The study has proven that C-SSI and BLUP-based methods were equally worthy in the selection of high-yielding genotypes with stable performance. However, the C-SSI approach could be the best method to ensure that genotypes with a considerable amount of stability are selected. The multi-year trial SSI revealed that entries Indaf-9, Sri Chaitanya, PR-202, and A-404; and VL324 and VL146 were ascertained to be the most stable high-yielding genotypes among medium-to-late and early maturity groups, respectively.


2022 ◽  
Vol 30 ◽  
pp. 096739112110632
Author(s):  
SI Radwan Torab ◽  
MM Shehata ◽  
HH Saleh ◽  
ZI Ali

Poly (vinyl alcohol) is blended with ethylene glycol by casting method to form PVA-EG blend films. These films were irradiated by both N2 ion beam extracted from dc ion source at different ion fluences and γ-rays with various irradiation doses. The effects of ion beam and γ-rays irradiation on the thermal, micro-hardness, and gel fraction properties of PVA-EG blend films were investigated. The gel fraction % and micro-hardness increase with increasing the γ-rays doses up to 150 kGy and then decreased, where they increased at all fluences of ion beam irradiation. The improvement in the gel fraction percentage and micro-hardness suggest that PVA-EG blend films exhibited a crosslink density. The thermal behavior was examined by thermogravimetric analysis and it shows different thermal patterns depending on the type and dose of radiation. The thermal stability parameters of γ-rays- and ion beam-irradiated PVA-EG samples were evaluated using the Ti, Ts, T0.5, Tf temperatures, and activation energy (Ea) values. The thermal stability parameters were dependent on both the type and extent of irradiation dose and fluence. Finally, there is a good agreement between the obtained results from different measurement techniques.


2021 ◽  
Vol 58 (4) ◽  
pp. 477-486
Author(s):  
Deepak Katkani ◽  
SK Payasi ◽  
Vinod Patel ◽  
Jay Prakash Chamar

The present research was undertaken to evaluate 32 rice genotypes for grain yield and its attributing traits under three micro-environments like., direct seeded condition (E-I), transplanting at spacing of 15 x 15 cm (E-II) and 25 x 15 cm (E-III). Adopting the Eberhart and Russell (1966) model, stability analysis of variance revealed significant differences among the genotypes for days to 50% flowering, days to maturity, plant height, panicle length, number of grains per panicle and flag leaf angle. Stability parameters for grain yield per plant indicated that the genotypes Rewa 1329-4-26-1, Rewa 1326-11-67-2 and Rewa 1326-16-1 had regression coefficient less than one and mean value higher than average mean this depicted that these genotypes have wider adaptability and suitability for all micro- environments and the genotypes Rewa 1329-4-123-11, Rewa 1328-18-16 and Rewa 1326-3-34-4 had regression coefficient less than one and deviation from regression around zero were identified as highly stable and best suited for poor management practices like, direct seeded condition.


2021 ◽  
Vol 11 ◽  
Author(s):  
Arundhati Banerjee ◽  
Rakhi Dasgupta

Background: When STAT3 is activated only by the IL6 family of proteins, then gp130 (having a phosphopeptide motif) interacts with human SOCS3 which further binds to JAK and inhibits its protein kinase activity. Interaction of gp130 with SOCS3 targets only the IL-6 signaling cascade. The interaction occurs when SOCS3 binds to a particular motif on gp130 (centered upon pTyr759) after its phosphorylation. Previously, wet laboratory studies were done but computational exploration for the participating residues remained unexplored. Methodology: The 3D structure of human SOCS3 protein was modeled and its stereo-chemical parameters were satisfied. Crystallographic structures of gp130-phosphopeptide and JAK were studied. After protein docking, the complex underwent minimization and molecular dynamics simulation. Different stability parameters and binding patterns with residues were evaluated Results, Discussion and Conclusion: The best modeled structure of SOCS3 protein was selected and found that it had three helices and seven sheets interspersed with coils. Arg133, Tyr137 and Tyr98 from SOCS3 formed manifold binding patterns with gp130 (mainly with pTyr759 and Glu758). Lys62, Lys63 and Arg65 from SOCS3 were also found to interact with Val762 of gp130. Interactions with JAK were also studied. Residue 53, 62-65, 98, 133, 136 and 137 formed the predominant binding pockets in SOCS3. They can serve as important target sites as well. Altogether, it created elctrostatically charged pockets to accommodate the partner proteins for each other. Gp130 phosphopeptide was observed to be tightly accommodated in the electrostatically positive zones on SOCS3 surface. Net area for solvent accessibility was also found to get drastically reduced implying high participation of residues. Earlier studies documented that the interaction of these three proteins occurs with affinity and have satisfactory association with each other. Here in this study, free energy of binding for the triple protein interaction through the ΔG values helped to infer that SOCS3 interacted spontaneously (in thermodynamic sense). Many helical conformations formed coiled-coils providing high flexibility to interact spontaneously. Most of the interactions were through the responsible SH2 domain (46-127 residue length) of SOCS3. Residues 53, 62-64 and 98 formed coils while the residue number 137adopted sheet conformation from coils. Future Scope: This study shall instigate to block the gp130-binding sites of SOCS3 through targeting of drugs, thereby preventing SOCS3-gp130 interaction. This would allow JAK-STAT signaling cascade which is paramount for several biological functions


Author(s):  
V. Manimozhi Selvi ◽  
A. Nirmalakumari

Twelve accessions of littlemillet genotypes which included 10 germplasm accessions and two released check varieties were studied over five environments of rainy seasons of 2013 for their grain yield and stability. The results have shown that genotypes TNPsu 141 and TNPsu 28 had possessed around unit regression coefficient (b = 1.24 to 0.82), thus displaying average stability and are adaptable to all the above five different agro-ecological zones.  Also, these genotypes had non- significant S2di values enabling it to predict the stability. Genotypes TNPsu 17, PM 29, TNPsu 18, and IPmr 886 manifested significantly higher single plant grain yield than the standard check varieties along with regression coefficient values of greater than one expressing above-average stability. These can be performed better in a favourable environment. However, they were classified as unstable due to their significant S2 di values revealing that the performance of the genotypes was unpredictable for the given environment. These genotypes were performed better under optimum conditions. Out of 12 genotypes MS 1826 and MS 4684 had an average response and appeared unpredictable stability. However, among the genotypes studied, TNPsu 141 possessed low yield and perform better in sub -optimum environments which are inferred by less than unit regression.


Foods ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3072
Author(s):  
Laura Principato ◽  
Daniele Carullo ◽  
Andrea Bassani ◽  
Alice Gruppi ◽  
Guillermo Duserm Garrido ◽  
...  

In this work, extra-virgin olive oil (EVO)- and sunflower oil (SFO)-based oleogels were structured using rice bran wax (RBW) at 10% by weight (w/w). Bamboo fiber milled with 40 (BF40), 90 (BF90) and 150 (BF150) µm of average size was added as a structuring agent. The effect of fiber addition and cooling temperature (0, 4, and 25 °C) on thermal and structural parameters of achieved gels was assessed by rheological (both in rotational and oscillatory mode), texture, and differential scanning calorimetry tests. Oleogelation modified the rheological behavior of EVO and SFO, thus shifting from a Newtonian trend typical of oils to a pseudoplastic non-Newtonian behavior in gels. Moreover, oleogels behaved as solid-like systems with G′ > G″, regardless of the applied condition. All samples exhibit a thermal-reversible behavior, even though the presence of hysteresis suggests a partial reduction in structural properties under stress. Decreasing in cooling temperature negatively contributed to network formation, despite being partially recovered by low-granulometry fiber addition. The latter dramatically improved either textural, rheological, or stability parameters of gels, as compared with only edible oil-based systems. Finally, wax/gel compatibility affected the crystallization enthalpy and final product stability (gel strength) due to different gelator–gelator and gelator–solvent interactions.


Author(s):  
Abdus Saboor ◽  
Nimra Yousaf ◽  
Javed Haneef ◽  
Syed Imran Ali ◽  
Shaine Mohammadali Lalji

AbstractAsphaltene Precipitation is a major issue in both upstream and downstream sectors of the Petroleum Industry. This problem could occur at different locations of the hydrocarbon production system i.e., in the reservoir, wellbore, flowlines network, separation and refining facilities, and during transportation process. Asphaltene precipitation begins due to certain factors which include variation in crude oil composition, changes in pressure and temperature, and electrokinetic effects. Asphaltene deposition may offer severe technical and economic challenges to operating Exploration and Production companies with respect to losses in hydrocarbon production, facilities damages, and costly preventive and treatment solutions. Therefore, asphaltene stability monitoring in crude oils is necessary for the prevention of aggravation of problem related to the asphaltene deposition. This study will discuss the performance of eleven different stability parameters or models already developed by researchers for the monitoring of asphaltene stability in crude oils. These stability parameters include Colloidal Instability Index, Stability Index, Colloidal Stability Index, Chamkalani’s stability classifier, Jamaluddin’s method, Modified Jamaluddin’s method, Stankiewicz plot, QQA plots and SCP plots. The advantage of implementing these stability models is that they utilize less input data as compared to other conventional modeling techniques. Moreover, these stability parameters also provide quick crude oils stability outcomes than expensive experimental methods like Heithaus parameter, Toluene equivalence, spot test, and oil compatibility model. This research study will also evaluate the accuracies of stability parameters by their implementation on different stability known crude oil samples present in the published literature. The drawbacks and limitations associated with these applied stability parameters will also be presented and discussed in detail. This research found that CSI performed best as compared to other SARA based stability predicting models. However, considering the limitation of CSI and other predictors, a new predictor, namely ANJIS (Abdus, Nimra, Javed, Imran & Shaine) Asphaltene stability predicting model is proposed. ANJIS when used on oil sample of different conditions show reasonable accuracy. The study helps Petroleum companies, both upstream and downstream sector, to determine the best possible SARA based parameter and its associated risk used for the screening of asphaltene stability in crude oils.


Molecules ◽  
2021 ◽  
Vol 26 (23) ◽  
pp. 7252
Author(s):  
Paweł K. Kunicki ◽  
Aleksandra Wróbel

The aim of the work was to prepare a simple but reliable HPLC-UV method for the routine monitoring of mycophenolic acid (MPA). Sample preparation was based on plasma protein precipitation with acetonitrile. The isocratic separation of MPA and internal standard (IS) fenbufen was made on Supelcosil LC-CN column (150 × 4.6 mm, 5 µm) using a mobile phase: CH3CN:H2O:0.5M KH2PO4:H3PO4 (260:700:40:0.4, v/v). UV detection was set at 305 nm. The calibration covered the MPA concentration range: 0.1–40 µg/mL. The precision was satisfactory with RSD of 0.97–7.06% for intra-assay and of 1.92–5.15% for inter-assay. The inaccuracy was found between −5.72% and +2.96% (+15.40% at LLOQ) and between −8.82% and +5.31% (+19.00% at LLOQ) for intra- and inter-assay, respectively, fulfilling acceptance criteria. After a two-year period of successful application, the presented method has been retrospectively calibrated using the raw data disregarding the IS in the calculations. The validation and stability parameters were similar for both calculation methods. MPA concentrations were recalculated and compared in 1187 consecutive routine therapeutic drug monitoring (TDM) trough plasma samples from mycophenolate-treated patients. A high agreement (r2 = 0.9931, p < 0.0001) of the results was found. A Bland–Altman test revealed a mean bias of −0.011 μg/mL (95% CI: −0.017; −0.005) comprising −0.14% (95% Cl: −0.39; +0.11), whereas the Passing–Bablok regression was y = 0.986x + 0.014. The presented method can be recommended as an attractive analytical tool for medical (hospital) laboratories equipped with solely basic HPLC apparatus. The procedure can be further simplified by disapplying an internal standard while maintaining appropriate precision and accuracy of measurements.


Sign in / Sign up

Export Citation Format

Share Document