Balancing tillage, soil loss, and profitability

2012 ◽  
Author(s):  
H. Mark Hanna ◽  
Matt Helmers
Keyword(s):  
2019 ◽  
Vol 7 (2) ◽  
pp. 100-111
Author(s):  
Miskar Maini ◽  
Junita Eka Susanti

Standar permintaan engineering pesawat agar desain bangunan infrastruktur di area Air Strip Runway 2600 yang ada dapat mempunyai fungsi lain. Sedangkan kondisi lain sangat menentukan keselamatan karena lahan di sekitar Air Strip Runway 2600 Bandara Depati Amir (PGK) jika tidak ditutupi vegetasi seperti rumput, kondisi lain lahan yang belum ditutupi vegetasi di sekitar Air Strip Runway 2600 berpotensi akan mengalami erosi lahan, kemudian hasil erosi lahan ini akan terbawa oleh aliran air sehingga akan masuk ke saluran drainase yang akan menyebabkan sedimentasi pada saluran drainase tersebut, akhirnya akan berkurang efektifitas kinerja saluran drainase tersebut. Metode yang digunakan untuk memprediksi laju rata-rata erosi di area Air Strip Runway 2600 dengan memperhitungkan faktor erosivitas hujan, erodibilitas tanah, kemiringan lereng atau panjang lereng, pengelolaan tanaman dan konservasi tanah, yang masing masing tata guna lahan tersebut mengacu pada Masterplan Ultimate Bandara Depati Amir (PGK). Perhitungan dilakukan menggunakan persamaan USLE (Universal Soil Loss Equation) yang dikembangkan oleh Wischmeier dan Smith (1965, 1978), kemudian Sediment Delivery Ratio (SDR) dan Sediment Yield.Hasil penelitian ini, prediksi laju erosi permukaan pada area Air Strip Runway 2600 Bandara Depati Amir (PGK) tahun pertama yang mencapai 5,60 mm/tahun atau 100,76 Ton/Ha/tahun, laju erosi tahun kedua mencapai 3,38 mm/tahun atau 60,84 Ton/Ha/tahun dapat diklasifikasikan ke dalam kelas bahaya erosi sedang (kelas III) dan nilai SDR adalah sebesar 56,3%, nilai sediment yield (SR) pada tahun pertama sebesar 5.887,59 Ton/Tahun, pada tahun kedua ketika rumput pada area Air Strip telah tumbuh dengan sempurna terjadi penurunan hasil sediment yield yaitu nilai SR sebesar 3.554,85 Ton/Tahun.


Author(s):  
Nguyễn Quang Việt ◽  
Trương Đình Trọng ◽  
Hồ Thị Nga

Vinh Linh, the northern district of Quang Tri province is characterized by a diversified topography with a large variety of elevations, high rainfall, and decreasing land cover due to forest exploiting for cultivation land. Thus, there is a high risk of erosion, soil fertility washout. With the support of GIS technology, the authors used the rMMF model to measure soil erosion. The input data of model including 15 coefficients related to topography, soil properties, climate and land cover. The simulations of rMMF include estimates of rainfall energy, runoff, soil particle detachment by raindrop, soil particle detachment by runoff, sediment transport capacity of runoff and soil loss. The result showed that amount of soil loss in year is estimated to vary between 0 kg/m2 minimum and 149 kg/m2 maximum and is divided into 4-classes of erosion. Light class almost covers the region researched (75.9% of total area), while moderate class occupies 8.1% of total area, strong classes only hold small area (16% of total area). Therefore, protection of the forest floor in sloping areas is one of the most effective methods to reduce soil erosion.


2019 ◽  
Vol 2 (1) ◽  
pp. 071-084
Author(s):  
Silwanus M. Talakua ◽  
Rafael M. Osok

The study was conducted in Wai Sari sub-watershed, Western Seram Regency Maluku to develop an accurate land degradation assessment model for tropical small islands. The Stocking’s field land degradation measurement and RUSLE methods were applied to estimate soil loss by erosion and the results of both methods were statistically tested in order to obtain a correction factor. Field indicators and prediction data were measured on 95 slope units derived from the topographic map. The rates of soil loss were calculated according to both methods, and the results were used to classify the degree of land degradation. The results show that the degree of land degradation based on the field assessment ranges from none-slight (4.04 - 17.565 t/ha/yr) to very high (235.44 - 404.00 t/ha/yr), while the RUSLE method ranges from none-slight (0.04-4.59 t/ha/yr) to very high 203.90 - 518.13 t/ha/yr.  However, the RUSLE method shows much higher in average soil loss (133.4 t/ha/yr) than the field assessment (33.9 t/ha/yr). The best regression equation of  logD/RP = - 0.594 + 1.0 logK + 1.0 logLS + 1.0 logC or D = 0.2547xRxKxLSx CxP was found to be a more suitable land degradation assessment  model for a small-scale catchment area in the tropical small islands.


2013 ◽  
Vol 19 (5) ◽  
pp. 766-773
Author(s):  
Jinniu WANG ◽  
Geng SUN ◽  
Fusun SHI ◽  
Jiceng XU ◽  
Yan WU ◽  
...  

2014 ◽  
Vol 18 (9) ◽  
pp. 3763-3775 ◽  
Author(s):  
K. Meusburger ◽  
G. Leitinger ◽  
L. Mabit ◽  
M. H. Mueller ◽  
A. Walter ◽  
...  

Abstract. Snow processes might be one important driver of soil erosion in Alpine grasslands and thus the unknown variable when erosion modelling is attempted. The aim of this study is to assess the importance of snow gliding as a soil erosion agent for four different land use/land cover types in a subalpine area in Switzerland. We used three different approaches to estimate soil erosion rates: sediment yield measurements in snow glide depositions, the fallout radionuclide 137Cs and modelling with the Revised Universal Soil Loss Equation (RUSLE). RUSLE permits the evaluation of soil loss by water erosion, the 137Cs method integrates soil loss due to all erosion agents involved, and the measurement of snow glide deposition sediment yield can be directly related to snow-glide-induced erosion. Further, cumulative snow glide distance was measured for the sites in the winter of 2009/2010 and modelled for the surrounding area and long-term average winter precipitation (1959–2010) with the spatial snow glide model (SSGM). Measured snow glide distance confirmed the presence of snow gliding and ranged from 2 to 189 cm, with lower values on the north-facing slopes. We observed a reduction of snow glide distance with increasing surface roughness of the vegetation, which is an important information with respect to conservation planning and expected and ongoing land use changes in the Alps. Snow glide erosion estimated from the snow glide depositions was highly variable with values ranging from 0.03 to 22.9 t ha−1 yr−1 in the winter of 2012/2013. For sites affected by snow glide deposition, a mean erosion rate of 8.4 t ha−1 yr−1 was found. The difference in long-term erosion rates determined with RUSLE and 137Cs confirms the constant influence of snow-glide-induced erosion, since a large difference (lower proportion of water erosion compared to total net erosion) was observed for sites with high snow glide rates and vice versa. Moreover, the difference between RUSLE and 137Cs erosion rates was related to the measured snow glide distance (R2 = 0.64; p < 0.005) and to the snow deposition sediment yields (R2 = 0.39; p = 0.13). The SSGM reproduced the relative difference of the measured snow glide values under different land uses and land cover types. The resulting map highlighted the relevance of snow gliding for large parts of the investigated area. Based on these results, we conclude that snow gliding appears to be a crucial and non-negligible process impacting soil erosion patterns and magnitude in subalpine areas with similar topographic and climatic conditions.


Author(s):  
Fekremariam Asargew Mihretie ◽  
Atsushi Tsunekawa ◽  
Nigussie Haregeweyn ◽  
Enyew Adgo ◽  
Mitsuru Tsubo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document