scholarly journals A Long-Term Look at Crop Rotation on Corn Yield and Response to Nitrogen Fertilization

Author(s):  
Antonio P. Mallarino ◽  
Enrique Ortiz-Torres
1976 ◽  
Vol 40 (1) ◽  
pp. 100-105 ◽  
Author(s):  
D. M. Van Doren ◽  
G. B. Triplett ◽  
J. E. Henry
Keyword(s):  

2016 ◽  
Vol 7 ◽  
Author(s):  
Laila A. Puntel ◽  
John E. Sawyer ◽  
Daniel W. Barker ◽  
Ranae Dietzel ◽  
Hanna Poffenbarger ◽  
...  

Author(s):  
Carlos A. Bonini Pires ◽  
Marcos M. Sarto ◽  
James S. Lin ◽  
William G. Davis ◽  
Charles Rice

1995 ◽  
Vol 75 (2) ◽  
pp. 355-362 ◽  
Author(s):  
C. F. Drury ◽  
C. S. Tan

Long-term effects of fertilization, crop rotation and weather factors [temperature, precipitation, net radiation, maximum (potential) evapotranspiration (ET) and corn heat units (CHU)] on the sustainability of corn grain yields were investigated over 35 yr. Treatments included fertilized and unfertilized continuous com and rotation corn-oats-alfalfa-alfalfa. The fertilized rotation corn treatment produced the greatest corn grain yields (15% moisture content) with an average of 7.75 t ha−1 followed by the fertilized continuous corn treatment with 6.02 t ha−1. Fertilization increased grain yield for continuous corn treatments by 279% and increased grain yields in the rotational corn treatments by 70%. Corn grain yields increased with time with the fertilized rotation treatment, remained relatively constant with the fertilized continuous corn and decreased with the unfertilized treatments. Growing season precipitation was the only weather variable tested which was significantly related to corn grain yield. Precipitation in July was proportional to corn grain yield for all fertilized treatments. Weather variation played little role for unfertilized corn. Continuous corn production was sustained (yields did not decrease with time) when fertilizer was added. There was a considerable yield advantage with fertilized corn when grown in a rotation compared with fertilized continuous corn. Fertilization and crop rotation practices increased and buffered corn yields. Key words: Long-term, corn, yield, fertilization, rotation, weather


Author(s):  
Michael A. Meier ◽  
Martha G. Lopez-Guerrero ◽  
Ming Guo ◽  
Marty R. Schmer ◽  
Joshua R. Herr ◽  
...  

Root associated microbes are key players in plant health, disease resistance, and nitrogen (N) use efficiency. It remains largely unclear how the interplay of biological and environmental factors affects rhizobiome dynamics in agricultural systems. Here, we quantified the composition of rhizosphere and bulk soil microbial communities associated with maize (Zea mays L.) and soybean (Glycine max L.) in a long-term crop rotation study under conventional fertilization and low N regimes. Over two growing seasons, we evaluated the effects of environmental conditions and several treatment factors on the abundance of rhizosphere and soil colonizing microbial taxa. Time of sampling, host plant species and N fertilization had major effects on microbiomes, while no effect of crop rotation was observed. Using variance partitioning as well as 16S sequence information, we further defined a set of 82 microbial genera and functional taxonomic groups at the sub-genus level that show distinct responses to treatment factors. We identified taxa that are highly specific to either maize or soybean rhizospheres, as well as taxa that are sensitive to N fertilization in plant rhizospheres and bulk soil. This study provides insights to harness the full potential of soil microbes in maize and soybean agricultural systems through plant breeding and field management. Importance Plant roots are colonized by large numbers of microbes, some of which may help the plant acquire nutrients and fight diseases. Our study contributes to a better understanding of root-colonizing microbes in the widespread and economically important maize/soybean crop rotation system. The long-term goal of this research is to optimize crop plant varieties and field management to create the best possible conditions for beneficial plant-microbe interactions to occur. These beneficial microbes may be harnessed to sustainably reduce dependency on pesticides and industrial fertilizer. We identify groups of microbes specific to the maize or to the soybean host and microbes that are sensitive to nitrogen fertilization. These microbes represent candidates that may be influenced through plant breeding or field management, and future research will be directed towards elucidating their roles in plant health and nitrogen usage.


2001 ◽  
Vol 72 (3) ◽  
pp. 197-210 ◽  
Author(s):  
Luis López-Bellido ◽  
Rafael J López-Bellido ◽  
Juan E Castillo ◽  
Francisco J López-Bellido

Author(s):  
Ol'ga Gladysheva ◽  
Oksana Artyuhova ◽  
Vera Svirina

The results of long-term research in experiments with crop rotations with different clover saturation are presented. It is shown that the cluster has a positive effect on the main indicators of vegetation of dark-gray forest soil. The introduction of two fields of perennial grasses into the six-field crop rotation significantly increases both the humus reserves and increases the productivity of arable land by 1.5–2 times compared to the crop rotation with a field of pure steam.


Sign in / Sign up

Export Citation Format

Share Document