scholarly journals Effect of heat stress during seed development and maturation on wheat (Triticum durum) seed quality

1994 ◽  
Author(s):  
Lahcen Grass
2017 ◽  
Vol 204 (2) ◽  
pp. 147-154 ◽  
Author(s):  
M. Rashid ◽  
J. G. Hampton ◽  
M. P. Rolston ◽  
K. M. Khan ◽  
D. J. Saville

1995 ◽  
Vol 75 (4) ◽  
pp. 821-829 ◽  
Author(s):  
L. Grass ◽  
J. S. Burris

Two wheat cultivars, Marzak and Oum-rabia, were subjected to three temperature regimes (20/15, 28/21, 36/29 °C) beginning 10 d after anthesis to maturity. As expected, high temperature resulted in low values of both seed yield and physical traits of seed quality. The effect of temperature on seed germination was not consistent among the two cultivars. High temperature during seed development and maturity had no effect on seed germination of Oum-rabia, whereas it decreased seed germination of Marzak. In contrast to seed germination, seed vigor was adversely affected by heat stress. This decline in seed vigor was reflected in reduced shoot and root dry weight, increased shoot/root ratio, reduced root length, low root number per seedling, and high seed conductivity. Excised embryo culture showed marked differences in the embryo growth potential. Although embryos from all treatments had germinated, a delay of 24–48 h was observed in the germination of embryos excised from seeds grown under high temperature conditions. Also, their shoot and radicle development over time lagged behind that of embryos isolated from seeds grown under cool temperature conditions. Exposing seeds to high temperature during development and maturity also resulted in low embryo oxygen uptake. Results presented in this study show that the growing conditions, in this instance temperature, of the parent plant affect the quality of its seed. Key words: Embryo, germination, oxygen uptake, vigor, wheat, high temperature


2018 ◽  
Vol 217 ◽  
pp. 172-179 ◽  
Author(s):  
Muhammad Rashid ◽  
John G. Hampton ◽  
M. Phil Rolston ◽  
Jason A.K. Trethewey ◽  
David J. Saville

Author(s):  
Javier Matías ◽  
María José Rodríguez ◽  
Verónica Cruz ◽  
Patricia Calvo ◽  
María Reguera

2019 ◽  
Author(s):  
Fatemeh Maghuly ◽  
Tamas Deak ◽  
Klemens Vierlinger ◽  
Stephan Pabinger ◽  
Hakim Tafer ◽  
...  

Abstract Background: Jatropha curcas, a tropical shrub, is a promising biofuel crop, which produces seeds with a high content of oil and protein. To better understand the development of its seeds to improve Jatropha`s agronomic performance, a two-step approach was performed: 1) generation of the entire transcriptome of six different maturation stages of J. curcas seeds using 454-Roche sequencing of a cDNA library, 2) comparison of transcriptional expression levels in six different developmental stages of seeds using a custom Agilent 8x60K oligonucleotide microarray. Results: A total of 793,875 high-quality reads were assembled into 19,841 unique full-length contigs, of which 13,705 could be annotated with Gene Ontology (GO) terms. Microarray data analysis identified 9,111 probes (out of 57,842 probes), which were differentially expressed between the six developmental stages. The expression results were validated for 70 randomly selected putative genes. Result from cluster analyses showed that transcripts related to sucrose, fatty acid, flavonoid, phenylpropanoid, lignin, hormone biosynthesis were over-represented in the early stage, while lipid storage, seed dormancy and maturation in the late stage. Generally, the expression of the most over-represented transcripts decrease in the last stage of seed maturation. Further, expression analyses of different maturation stages of J. curcas seed showed that most changes in transcript abundance occurred between the two last stages, suggesting that the timing of metabolic pathways during seed maturation in J. curcas is in late stages. The co-expression result showed a high degree of connectivity between genes that play essential role in fatty acid biosynthesis and nutrient mobilization. Furthermore, seed development and hormone pathways are significantly well connected. Conclusion: The obtained results revealed DESs regulating important pathways related to seed maturation, which could contribute to understanding the complex regulatory network during seed development. This study provides detailed information on transcription changes during J. curcas seed development and provides a starting point for a genomic survey of seed quality traits. The current results highlighted specific genes and processes relevant to the molecular mechanisms involved in Jatropha seed development, and it is anticipated that this data can be delivered to other Euphorbiaceae species of economic value.


2019 ◽  
Vol 29 (2) ◽  
pp. 135-142 ◽  
Author(s):  
Richard H. Ellis

AbstractThe long-standing hypothesis that seed quality improves during seed filling, is greatest at the end of seed filling, and declines thereafter (because seed deterioration was assumed to begin then), provided a template for research in seed quality development. It was rejected by investigations where seed quality was shown to improve throughout both seed development and maturation until harvest maturity, before seed deterioration was first observed. Several other temporal patterns of seed quality development and decline have also been reported. These are portrayed and compared. The assessment suggests that the original hypothesis was too simple, because it combined several component hypotheses: (a) the seed improvement (only) phase ends before seed deterioration (only) commences; (b) there is only a brief single point in time during seed development and maturation when, in all circumstances, seed quality is maximal; (c) the seed quality improvement phase coincides perfectly with seed filling, with deterioration only post-seed filling. It is concluded that the search for the single point of maximum seed quality was a false quest because (a) seed improvement and deterioration may cycle (sequentially if not simultaneously) during seed development and maturation; (b) the relative sensitivity of the rates of improvement and deterioration to environment may differ; (c) the period of maximum quality may be brief or extended. Hence, when maximum quality is first attained, and for how long it is maintained, during seed development and maturation varies with genotype and environment. This is pertinent to quality seed production in current and future climates as it will be affected by climate change and a likelihood of more frequent coincidence of brief periods of extreme temperatures with highly sensitive phases of seed development and maturation. This is a possible tipping point for food security and for ecological diversity.


Sign in / Sign up

Export Citation Format

Share Document