Maternal light environment during seed development can affect seed quality of Euterpe edulis

2017 ◽  
Vol 29 (1) ◽  
pp. 1-11
Author(s):  
Fernanda da Silva Alabarce ◽  
Lucia Rebello Dillenburg
2007 ◽  
Vol 87 (1) ◽  
pp. 13-26 ◽  
Author(s):  
C. L. Vera ◽  
R. K. Downey ◽  
S. M. Woods ◽  
J. P. Raney ◽  
D. I. McGregor ◽  
...  

Swathing is an important canola (Brassica napus L.) harvest operation in western Canada. The determination of the optimum timing for this operation is worth considering, as premature swathing may lead to reduced seed yield and quality. Seed yield and quality of three canola cultivars (44A89, AC Excel and Ebony), as affected by two seeding dates and several harvest times (six or eight swathing times and one direct combined treatment) was investigated on a Black Chernozem silty loam soil at Melfort, Saskatchewan, Canada, during 1998, 2000 and 2001. Seed yield, weight, protein content (oil-free meal basis) and oil content generally increased with seed development and swathing time. Early seeding was more conducive to achieving higher seed yield, especially in good growing conditions, and resulted in heavier mature seeds with higher oil content. Seed oil composition also changed during seed development. The proportion of oleic (C18:1) and linolenic (C18:3) acids increased, while that of myristic (C14:0), palmitic (C16:0), palmitoleic (C16:1), stearic (C18:0), linoleic (C18:2) and ara chidic (C20:0) acids decreased. The levels of the long chain fatty acids eicosenoic (C20:1) and erucic (C22:1) acids were unaffected. However, the overall amount of fatty acids synthesized (mg 100 seeds-1) increased as seeds matured. Swathing was advantageous over direct combining in preventing weather-induced shattering. Key words: Brassica napus, canola, fatty acid, oil, protein, seed development, seed quality, shattering, direct combining, swathing


HortScience ◽  
2006 ◽  
Vol 41 (4) ◽  
pp. 1070B-1070
Author(s):  
Samuel Contreras ◽  
David Tay ◽  
Mark A. Bennett

Among the factors affecting germinability of a seed lot are the environmental conditions under which the seeds are produced. The objective of this study was to determine the effects of temperature during seed development on seed quality of two Asteraceae species. Seeds of lettuce cv. Tango and Helianthus debilis cv. Vanilla Ice and sp. cucumerifolius were produced in a greenhouse under one of two treatments: i) hot (27, 40, and 20 °C temperatures average, max, and min, respectively), and ii) cool (23, 33, and 18 °C temperatures average, max, and min, respectively). In both species, heavier seeds were produced under the cool conditions and no differences were observed in standard germination. In lettuce, germination percentage and rate were both affected by increased levels of exogenous ABA concentrations and reduced water potential (PEG solutions), and, in both cases, seeds from cool treatments were more affected. Germination at 30 °C and constant light was higher for seeds from the hot treatment. Lettuce seed showed a strong light requirement for germination. However, seeds from the hot treatment gave better dark germination at 13 and 19 °C. Seeds of H. debilis did not required light for germination, and the germination percentage and rates were evaluated at 13, 21, and 29 °C. For both lines, seeds from each treatment behave similarly; however, the germination of H. debilis cv. Vanilla Ice at 29 °C was higher when seeds were produced in the hot conditions. The results showed that temperature during seed development affected aspects of seed quality that are not detectable by the standard germination, but by germination at suboptimal conditions. Within the Asteraceae family, differences varied among and within species.


HortScience ◽  
2008 ◽  
Vol 43 (3) ◽  
pp. 845-852 ◽  
Author(s):  
Samuel Contreras ◽  
Mark A. Bennett ◽  
James D. Metzger ◽  
David Tay

Seed germinability and storability are important aspects of seed quality determined by the genotype and environment of seed development. Lettuce (Lactuca sativa L.) is produced commercially in most temperate and subtropical areas of the world. The objective of this study was to determine how photoperiod and light quality of the mother plant environment affects lettuce seed quality. Seeds of cv. Tango were produced in growth chambers under one of two treatments: a) short day (SD), consisting of 8 hours of fluorescent light (≈310 μmol·m−2·s−1) plus 16 hours of darkness daily, and b) long day (LD), consisting of 4 hours of incandescent light (≈21 μmol·m−2·s−1), 8 hours of fluorescent light, 4 hours of incandescent light, and 8 hours of darkness daily. The red to far-red ratio was ≈6.8 and 1.0 for the fluorescent and incandescent light, respectively. In both treatments, the temperature was 23 °C. The LD treatment produced significantly heavier seeds; however, germination at optimal conditions (20 °C-light) was similar for both treatments. Germinability (percentage and rates) at suboptimal conditions (30 °C, 20 °C with different external ABA concentrations, negative osmotic potentials, or dark) was higher for seeds produced under the LD treatment. On the other hand, seeds produced under the LD treatment presented better storability (evaluated by the accelerated aging test and standard germination after storage at 30 °C and 74% RH). The critical period for light environment effects was also studied. Seed weight patterns were determined early in seed development, during the first 6 days after flowering. Conversely, light environment effects on seed germinability and storability were determined at the end of seed development, after physiological maturity, which occurred by 11 days after flowering. These results show that lettuce seed germinability and storability may be modified by management of light conditions during seed production and provide useful information for seed producers, seed companies, and seed conservation institutions.


2019 ◽  
pp. 205-208
Author(s):  
E.V. Justino ◽  
A.C. Amaral-Lopes ◽  
P.P. Silva ◽  
W.M. Nascimento

2011 ◽  
Vol 39 (1) ◽  
pp. 178 ◽  
Author(s):  
Kazem GHASSEMI-GOLEZANI ◽  
Zahra TAJBAKHSH ◽  
Yaeghoob RAEY

In order to evaluate seed development and quality of maize (Zea mays) cultivars (DC-370, SC-500, OSSK-602 and SC-604), a split plot experiment (using R.C.B. design) with three replicates was conducted in 2009 at the Research Farm of the Faculty of Agriculture, University of Tabriz, Iran. Seeds were harvested at five day intervals in eight stages. Subsequently, the quality of seed samples was determined in the laboratory. Germination percentage and seedling dry weight were enhanced, but electrical conductivity of seed leachates was reduced with increasing seed weight on mother plant. Maximum seed quality of maize cultivars was attained at the end of seed filling phase. Seed quality at earlier harvests was low, because of immaturity. Differences in maximum seedling dry weight of maize cultivars were attributed to variation in genetic constitution. It was concluded that in maize cultivars, maximum seed quality could be achieved at physiological maturity.


1998 ◽  
Vol 123 (4) ◽  
pp. 692-699 ◽  
Author(s):  
David W. Still ◽  
Kent J. Bradford

With many seed crops, the most difficult production decision is when to harvest. In indeterminate crops such as Brassica species, early harvests result in immature seed of low vigor while late harvests risk seed deterioration and seed loss due to shattering. To provide a biological basis on which to determine harvest timing, we have characterized seed development in rape seed (Brassica napus L. `Weststar') and red cabbage (Brassica oleracea L. Group Capitata) using population-based hydrotime and ABA-time models. These models provide information relevant to assessing physiological maturity, and therefore, seed quality. The hydrotime and ABA-time models quantify germination rate, the uniformity of germination, viability, and the sensitivity of germination to water potential and ABA. Indices derived from these models, along with maximum germination and t50 values, were used to determine physiological maturity (maximum seed quality) of the seeds during development. The overall trends in seed development were similar in both species: as seeds matured, germination became more uniform and less sensitive to low Ψ and externally applied ABA. The models accurately described germination time courses and final germination percentages except for seeds imbibed at very high concentrations of ABA. In rape seed, physiological maturity was attained several days after maximum seed dry mass, while in red cabbage physiological maturity occurred at or after maximum seed dry mass. Vigor indices were correlated with easily discerned traits such as moisture content and silique phenotypic characteristics. The results of these experiments suggest that hydrotime and ABA-time models can be successfully used to provide a biological basis on which to determine harvest in brassicas.


2014 ◽  
Vol 2 (2) ◽  
pp. 93-100
Author(s):  
Shahnaj Yesmina ◽  
Moushumi Akhtarb ◽  
Belal Hossain

The experiment was conducted to find out the effect of variety, nitrogen level and harvesting time on yield and seed quality of barley. The treatments used in the experiment consisted of two varieties viz. BARI Barley 4 and BARI Barley 5, three harvesting time viz. 35, 40 and 45 Days after Anthesis (DAA) and nitrogen levels viz. 0, 70, 85 and 100 kg N ha-1 . The experiment was laid out in a spilt- spilt-plot design with three replications assigning the variety to the main plot, harvesting time to the sub-plots and nitrogen level to the sub-sub plots. Variety had significant effects on the all yield attributes except fertile seeds spike-1 . Seed quality parameters viz. normal seeds spike-1 , deformed seeds spike-1 , germination (%) and vigour index were statistically significant. The variety BARI Barley 5 produced higher grain yield and seed quality than BARI Barley 4. Grain yield from BARI Barley 5 and BARI Barley 4 were 4.59 t ha-1 and 4.24 t ha-1 , respectively. Significantly, the highest 1000-seed weight (46.90 g) was produced by BARI Barley 5 than (37.90 g) BARI Barley 4. The result revealed that harvesting time had significant effect on yield and yield attributes and seed quality parameters. Seed yield was highest (4.65 t ha-1 ) when the crop harvested at 40 DAA and it was increased linearly from 35 DAA. Maximum quality seed and 1000-seed weight (43.20 g) was obtained when the crop harvested at 40 DAA. All the yields, yield attributes and seed quality parameters were significantly influenced by nitrogen levels. The highest grain yield (5.14 t ha-1 ) was obtained when BARI Barley 5 variety was fertilized by 100 kg N ha-1 and the lowest (3.14 t ha-1 ) was obtained from control treatments. Normal seeds spike-1 , vigour index, germination (%) were better at 85 kg N ha-1 in variety of BARI Barley 5 than BARI Barley 4. So it can be concluded that BARI Barley 5 showed better result when fertilized with 100 kg N ha-1 and harvested at 40 DAA for getting maximum yield and 85 kg N ha-1 and harvested at 40 DAA for getting better quality seed.


Crop Science ◽  
1976 ◽  
Vol 16 (3) ◽  
pp. 407-409 ◽  
Author(s):  
John H. Turner ◽  
H. H. Ramey ◽  
Smith Worley
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document