scholarly journals NEW DUCTILE STEEL FRAMES LIMITING DAMAGE TO CONNECTION ELEMENTS AT BOTTOM FLANGE OF BEAM-ENDS : Part 2 Cyclic loading tests of frames with a concrete slab

Author(s):  
Shoichi KISHIKI ◽  
Satoshi YAMADA ◽  
Toru TAKEUCHI ◽  
Kazuaki SUZUKI ◽  
Eiichiro SAEKI ◽  
...  
2016 ◽  
Vol 81 (727) ◽  
pp. 1575-1584
Author(s):  
Kazuhiro FUJISHITA ◽  
Ahmet BAL ◽  
Fatih SUTCU ◽  
Ryota MATSUI ◽  
Masao TERASHIMA ◽  
...  

2019 ◽  
Vol 25 (60) ◽  
pp. 655-659
Author(s):  
Shuzo HIROISHI ◽  
Akira OKADA ◽  
Naoya MIYASATO ◽  
Noburu NAKAMURA ◽  
Kenichi MAMURO ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Zhangqi Hu ◽  
Ran He ◽  
Yukui Wang ◽  
Weirong Lv ◽  
Jingchao Li

This paper proposes a novel U-shaped steel-encased concrete composite beam-girder joint (referred to herein as the novel composite beam-girder joint), in which the U-shaped beams at two sides (L and R) are inserted into a shaped sleeve, and the U-shaped girder and two U-shaped beams are connected by the shaped sleeve through welding. Compared with the traditional beam-girder joints, the novel composite beam-girder joints take advantage of easy construction, light weight, and short construction period. The failure patterns, load-strain and load-deflection curves, and strain distributions of the novel composite beam-girder joints were investigated through the static loading tests on two full-scale specimens, denoted as GBJ1 and GBJ2. The two specimens were varied in beam section reinforcements. Specimen GBJ2 was equipped with 3Ф16 additional bars in the U-shaped beams based on Specimen GBJ1. Test results show that the two specimens failed as the through arc cracks developed at the concrete slab interfaces. The additional bars can increase the bearing capacity slightly but will also increase the stress concentration on the bottom flange of the shaped sleeve, leading to the decrease of ductility for Specimen GBJ2. The slab effect is considered in the test and can thus reflect the actual stress state of the beam-girder joints well. This study can provide a reference for the design and application of beam-girder joints.


2020 ◽  
Vol 14 (2) ◽  
pp. 143-153
Author(s):  
Oksa Eberly ◽  
◽  
Sri Murni Dewi ◽  
Wisnumurti Wisnumurti ◽  
◽  
...  

This paper presents an experimental study on the behaviour of a braced steel frame with a proposed system: anticompression brace system (ABS) subjected to cyclic lateral loads. The ABS is proposed to deal with common brace buckling problems. In the study, split-K braced steel frames: with ABS and with ordinary brace system (OBS) were used as speciments. Cyclic loading tests were conducted to evaluate the performance of the proposed system in preventing the brace to buckle and to obtain the behaviour of the frame with ABS compared to the frame with OBS under cyclic quasistatic loading. From the cyclic tests, it was observed that the proposed system worked in preventing the braces to buckle, hence, the aimed state, “buckling prevention” was achieved. The results of the study also show that the frame with ABS had a lower initial stiffness compared to the frame with OBS, nevertheless, after exceeding drift ratio of 0.85% based on raw data or 0.64% based on fitted-curves, the frame with ABS exhibited good behaviour through lower degradations in stiffness and cyclic strength relative to the frame with OBS that experienced sudden and greater degradations.


Sign in / Sign up

Export Citation Format

Share Document