ductile steel
Recently Published Documents


TOTAL DOCUMENTS

98
(FIVE YEARS 24)

H-INDEX

14
(FIVE YEARS 2)

Metals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1948
Author(s):  
Niclas Spalek ◽  
Jakob Brunow ◽  
Moritz Braun ◽  
Marcus Rutner

Laminated metal composites are a promising design since the hybrid design enables superior and tailorable material properties compared with bulk material. The article introduces for the first time, laminated metal composites consisting of multiple bilayers of alternating layers of ductile and high-strength steel processed by wire arc additive manufacturing (WAAM). The layup of the laminated metal composites is built up by alternating deposits made of ductile steel and high-strength steel type wires. Governing parameters in the fabrication process affecting the material properties, such as dilution, are discussed. Enhanced material properties of the laminated metal composites fabricated by WAAM are investigated under static tensile, impact and tension-tension high-cycle-fatigue loading and compared to the relating homogenous weld metal. Potential reasons for the retardation of crack propagation in laminated metal composites fabricated by WAAM compared to findings in roll-bonded laminated metal composites are discussed. WAAM is conducted by a collaborative robot providing a high level of flexibility in respect to geometry and scalability. Tailorability of material properties through WAAM-fabricated laminated metal composites adds an important layer of flexibility which has not been explored yet.


2021 ◽  
Vol 184 ◽  
pp. 106765
Author(s):  
Sayuri Honma ◽  
Kazumasa Ebato ◽  
Yukihiro Harada

2021 ◽  
Vol 13 (17) ◽  
pp. 9787
Author(s):  
Giuseppe Occhipinti ◽  
Francesco Cannizzaro ◽  
Salvatore Caddemi ◽  
Ivo Caliò

This paper adopts the use of steel frames around existing openings as a low-impact seismic retrofitting strategy for unreinforced masonry structures (URM). Although elastic steel frames have been commonly adopted for strengthening masonry walls in case of the realization of new openings, the use of elasto-plastic frames has been proposed only recently. This study adopts the application of low-resistance ductile steel frames on the openings of existing masonry buildings as a low-impact retrofitting strategy. The adopted low-invasive solution possesses the advantage of increasing the in-plane resistance of the masonry wall, improving the displacement capacity, introducing additional energy dissipation under dynamic loadings, and providing a confinement effect on the adjacent masonry piers. An original aspect of the present paper is related to the adopted numerical method for modelling the presence of the steel frames around the openings. Namely, a Discrete Macro-Element Method (DMEM), which allows an efficient and reliable simulation of the involved collapse mechanisms of the masonry walls interacting with the frames, has been adopted. After the validation of the numerical approach, through a comparison with experimental results already reported in the literature, the low-impact strategy has been applied on a benchmark known as the “via Martoglio building”. The obtained results suggest that this low-impact retrofitting strategy can be successfully proposed for URM buildings and can be efficiently modelled by means of the DMEM.


Author(s):  
Preena Praveen

Buckling is a main problem in every structure. It is a sudden change in shape or deformation of a structural component under load. Under moderate to severe earthquakes, buckling of compressive braces may cause damage to the joints and connections. So Buckling-Restrained Braces (BRBs) have been widely implemented in framed structures to reduce damage during severe earthquakes. Unlike conventional braces that buckle under compression, the core of BRBs yields both in tension and compression under the restraining effect of the casing. A typical buckling-restrained brace (BRB) is composed of a ductile steel core, which is designed to yield in both tension and compression. To avoid global buckling in compression, the steel core is usually wrapped with a steel casing, which is subsequently filled with mortar or concrete. So in this work the deflection amplification factor of these braces are found out. As DAF predicts the maximum capacity of the structure, so a deep study in this field is necessary. DAF is the ratio of in-elastic deformations to elastic deformation. So after finding the DAF of these BRBs and by knowing the elastic deformation of the structure we can easily find the in-elastic deformation. For this works the analysis are carried out using etabs and abaqus software.


Author(s):  
Michael Brünig ◽  
Marco Schmidt ◽  
Steffen Gerke

Abstract The paper deals with a numerical model to investigate the influence of stress state on damage and failure in the ductile steel X5CrNi18-10. The numerical analysis is based on an anisotropic continuum damage model taking into account yield and damage criteria as well as evolution equations for plastic and damage strain rate tensors. Results of numerical simulations of biaxial experiments with the X0- and the H-specimen presented. In the experiments, formation of strain fields are monitored by digital image correlation which can be compared with numerically predicted ones to validate the numerical model. Based on the numerical analysis the strain and stress quantities in selected parts of the specimens are predicted. Analysis of damage strain variables enables prediction of fracture lines observed in the tests. Stress measures are used to explain different stress-state-dependent damage and failure mechanisms on the micro-level visualized on fracture surfaces by scanning electron microscopy.


Sign in / Sign up

Export Citation Format

Share Document