scholarly journals Studi Eksperimental: Perilaku Siklik Anticompression Split-K Braced Steel Frame

2020 ◽  
Vol 14 (2) ◽  
pp. 143-153
Author(s):  
Oksa Eberly ◽  
◽  
Sri Murni Dewi ◽  
Wisnumurti Wisnumurti ◽  
◽  
...  

This paper presents an experimental study on the behaviour of a braced steel frame with a proposed system: anticompression brace system (ABS) subjected to cyclic lateral loads. The ABS is proposed to deal with common brace buckling problems. In the study, split-K braced steel frames: with ABS and with ordinary brace system (OBS) were used as speciments. Cyclic loading tests were conducted to evaluate the performance of the proposed system in preventing the brace to buckle and to obtain the behaviour of the frame with ABS compared to the frame with OBS under cyclic quasistatic loading. From the cyclic tests, it was observed that the proposed system worked in preventing the braces to buckle, hence, the aimed state, “buckling prevention” was achieved. The results of the study also show that the frame with ABS had a lower initial stiffness compared to the frame with OBS, nevertheless, after exceeding drift ratio of 0.85% based on raw data or 0.64% based on fitted-curves, the frame with ABS exhibited good behaviour through lower degradations in stiffness and cyclic strength relative to the frame with OBS that experienced sudden and greater degradations.

2019 ◽  
Vol 2019 ◽  
pp. 1-13
Author(s):  
Shuainan Zhai ◽  
Zuyin Zou ◽  
Zhanyuan Zhu ◽  
Zixing Zhang ◽  
Wei Liang ◽  
...  

In the past, earthquakes have caused significant damage to traditional masonry filler wall frame structures. To solve this problem, a new design scheme, the partition damping filler wall, is proposed in this paper to reduce the interaction between the filler wall and the frame structure. Low cyclic loading tests are carried out on the traditional and the new masonry filler wall frames. Besides, one full-scale-angled span layer frame without a filler wall is produced for comparison analysis. The mechanical performances of the different frames are studied, including the characteristics of the deformation failure modes, hysteretic curves, skeleton curves, rigidity degeneration, energy dissipation capacity, and the lateral displacement of the frame columns. The research results show that the partition damping filler wall can significantly decrease the diagonal bracing effect of the filler wall on the steel frame. Meanwhile, the setting of the low-strength mortar between the filler wall and steel frame and the arrangement of the damping layer can improve the stress distribution and delay the crack development of the wall. Furthermore, the stiffness degradation rate of the partition damping filler wall is obviously slower than that of the traditional masonry filler wall frame structure. In this paper, the partition damped wall-filled frame structure shows outstanding ductility and deformation capacity.


1979 ◽  
Vol 16 (1) ◽  
pp. 163-176 ◽  
Author(s):  
Kenneth L. Lee

Cyclic loading tests were performed on many undisturbed specimens and a few compacted specimens of two samples of very sensitive clay from an earth dam site on the Outardes River in Quebec. Failure occurred when one or more thin shear zones developed in which the remolded soil was reduced to a liquid, while the rest of the specimen remained intact, strong, and brittle. The cyclic strength of this clay was high in comparison to that required for the foundation of a planned earth dike and was relatively strong in comparison with other clays. However, simplified analyses indicate that under some conditions dynamic loading can be expected to induce instability in this type of soil.


2016 ◽  
Vol 81 (727) ◽  
pp. 1575-1584
Author(s):  
Kazuhiro FUJISHITA ◽  
Ahmet BAL ◽  
Fatih SUTCU ◽  
Ryota MATSUI ◽  
Masao TERASHIMA ◽  
...  

2005 ◽  
Vol 297-300 ◽  
pp. 635-640 ◽  
Author(s):  
Jae Hyouk Choi ◽  
Kenichi Ohi

Effectiveness of steel bracing system installed with fully mechanical interfaces is experimentally demonstrated through a series of monotonic and cyclic loading tests. Also, substructuring pseudo-dynamic earthquake response tests are performed on a possible situation of a two-story braced frame upgraded by the proposed bracing system. An earthquake record and theoretical impulses are adopted as input excitations. The results show that an impulsive excitation acts more stringently on the occurrence of brace breaking.


2021 ◽  
Vol 177 ◽  
pp. 106477
Author(s):  
Zheng-Xian Bai ◽  
Cun-Jie Shen ◽  
Zi-Qin Jiang ◽  
Kui-Kui Cheng ◽  
Han-Wen Wang

2018 ◽  
Vol 5 (10) ◽  
pp. 180321 ◽  
Author(s):  
Jia Suizi ◽  
Cao Wanlin ◽  
Zhang Yuchen

Given the development of precast structures for low-rise residential buildings, this study explores a new structure—namely, an integrated precast structure of lightweight recycled concrete wall with single-row reinforcement—under a lightweight steel frame filled with recycled concrete (integrated precast structure for short). The lightweight steel frame and lightweight wall cooperate to bear the forces. The applied concealed bracing, either a rebar bracing or a steel plate bracing, increases the shear resistance of the wall. The lightweight steel frame is designed to bear the vertical loading, whereas the seismic load in the horizontal direction is jointly borne by the frame and wall. This study presents the results of low reversed cyclic loading tests on nine specimens of integrated precast structures. An analysis is then carried out to investigate the mechanical properties of the specimens; based on these results, a formula for the force-bearing performance of the inclined section is developed. The results show satisfactory performance as an integrated piece; the proposed structure has two seismic lines of defence, with the lightweight wall restraint by the side frame being the first line and the steel frame being the second line. Because the failure of the wall can be categorized as shear failure, the restraint of the lightweight steel frame significantly reduces the potential damage of the wall. As the beams and columns of the steel frame tend to bend against failure, the wall filling helps resist sliding. Therefore, the reinforced joints of the connecting beams and columns show no visible signs of damage, indicating that the connection between the beams and columns is reliable. The narrow spacing of rebars and the setting of concealed bracing contribute to the increase in ductility and energy efficiency of the integrated structure and the evident reduction in the failure process. Furthermore, the recycled concrete increases the seismic resistance of the structure.


2019 ◽  
Vol 9 (21) ◽  
pp. 4723 ◽  
Author(s):  
Sun ◽  
Guo ◽  
Liu

Experiments were performed on four specimens of steel frames with infilled recycled aggregate concrete shear walls (SFIRACSWs), one specimen of infilled ordinary concrete wall, and one pure-steel frame were conducted under horizontal low cyclic loading. The influence of the composite forms of steel frames and RACSWs (namely, infilled cast-in-place and infilled prefabricated) on the failure modes, transfer mechanisms of lateral force, bearing capacity, and ductility of SFIRACSWs is discussed, and the concrete type and connecting stiffness of beam–column joints (BCJs) are also considered. Test results showed that infilled RACSWs can increase the bearing capacity and lateral stiffness of SFIRACSWs. The connecting stiffness of BCJs slightly influences the seismic behavior of SFIRACSWs. In the infilled cast-in-place RACSWs, the wall cracks mainly extended along the diagonal direction. The bearing capacity was 2.4 times higher than in the pure steel frame, the initial stiffness was 4.3 times higher, and the displacement ductility factors were 2.44–2.69 times higher. In the infilled prefabricated RACSWs, the wall cracks mainly extended along the connection between the embedded T-shape connectors and walls before finally connecting along the horizontal direction. Moreover, shear failure occurred in the specimens. The bearing capacity was 1.44 times higher than that of the pure steel frame, the initial stiffness was 2.8 times higher, and the displacement ductility factors were 3.32–3.40 times higher. The degradation coefficients of the bearing capacity were more than 0.85, indicating that the specimens demonstrated a high safety reserve.


Author(s):  
Zirui Huang ◽  
Dongsheng Huang ◽  
Yanhua Wang ◽  
Yan Feng

This paper presents a novel bamboo/wood-steel hybrid frame which uses engineered bamboo products as beams and steel as columns. The beams and columns are jointed by an innovative connection which incorporates a steel hinge and two steel brackets to carry shear force and moment from the end of beam, respectively. The bracket consists of two segments, i.e. joint segment connected to beam and the other segment, which serves as energy dissipation panel (EDP), connected to the columns via a base panel. By this way, the connection can provide sufficient initial stiffness for serviceability requirements and excellent energy dissipation capacity for seismic performances. Lateral cyclic loading tests were conducted to investigate the seismic performances of the frame. It was found that hysteresis loops of the frame with energy dissipation joints show less pinching than that of frames with dowel- or bolt-type connections; by proper designing, the damage and failure of the frame can be restricted in the EDPs of connections, whereas virtually no damage was observed in the other components of the frame; the connection can provide more than 10 % damping for the frame after the yielding of EDPs. Design method is also proposed in this paper.


Sign in / Sign up

Export Citation Format

Share Document