scholarly journals STUDY ON SEISMIC EVALUATION OF SOIL-PILE-RC STRUCTURE SYSTEM BASED ON EQUIVALENT LINEAR ANALYSIS

2015 ◽  
Vol 80 (709) ◽  
pp. 379-389
Author(s):  
Masatoshi YAMAZOE ◽  
Masaki MAEDA ◽  
Hajime OKANO
Author(s):  
Raudhah Ahmadi ◽  
Muhammad Haniz Azahari Muhamad Suhaili ◽  
Imtiyaz Akbar Najar ◽  
Muhammad Azmi Ladi ◽  
Nisa Aqila Bakie ◽  
...  

Author(s):  
Shiang-Jung Wang ◽  
Yin-Nan Huang ◽  
Hsueh-Wen Lee ◽  
Yu-Wen Chang

The design displacement, its corresponding acceleration performance, and the re-centering performance of bilinear hysteretic isolation systems are adopted as previously determined design objectives for equivalent linear analysis. To demonstrate the applicability and generalization of the analysis procedure, two sets of values for damping modification factors are employed in the analysis: those provided by ASCE/SEI 7-16, and those estimated for different ranges of the ratios of effective periods of seismic isolation systems to pulse periods of ground motions. To investigate a broad range of seismic responses of base-isolated structures, 15 pulse-like near-fault ground motions are used for numerical demonstration. The analysis procedure is numerically verified to be practically feasible. A numerical comparison also shows that the three design objectives previously determined in the analysis procedure are sufficiently conservative compared with analysis results from nonlinear dynamic response history, even when subjected to pulse-like near-fault ground motions. Regarding the approximation to maximum inelastic acceleration and displacement responses, it is particularly more conservative for the former when the design displacement is greater and when adopting values of the damping modification factors provided in ASCE/SEI 7-16. For the approximation to dynamic residual displacement responses, the influences of pulse-like near-fault ground motions and different design objectives on the re-centering performance of bilinear hysteretic isolation systems still need further study.


Sign in / Sign up

Export Citation Format

Share Document