scholarly journals ANALYSIS ON EARTHQUAKE GROUND MOTIONS INCLUDING VERTICAL COMPONENTS : Part 2. Results of Numerical Analysis on Effects of Soil Condition and Source Mechanism of a Fault, especially Slip Vector and Dip Angle.

1978 ◽  
Vol 274 (0) ◽  
pp. 9-15
Author(s):  
KATSUHIKO ISHIDA ◽  
MAKOTO WATABE ◽  
YORIHIKO OSAKI
1985 ◽  
Vol 1 (2) ◽  
pp. 239-270 ◽  
Author(s):  
Jogeshwar P. Singh

Until recently, characteristics of strong ground motion resulting from different soil conditions were considered the dominant factor in developing design ground motions and reconciling observed damage. Interpretation of recent recordings of earthquakes by strong motion instrument arrays installed in California and Taiwan show that basic characteristics of strong motion are greatly influenced by the seismological and geological conditions. For a given soil condition, the characteristics of strong ground motion (peak ground acceleration, peak ground velocity, peak ground displacement, duration, spectral content, and time histories) can vary significantly whether the site is near or far from the seismic source. As local soil conditions only modify the ground motions produced by a given source, variability in ground motion due to seismologic and geologic conditions (for a given soil condition) must be considered in estimating earthquake ground motions for structural design or for estimating structural vulnerabilities to reconcile earthquake-related damage.


2008 ◽  
Vol 24 (1) ◽  
pp. 279-298 ◽  
Author(s):  
Paul Spudich ◽  
Brian S. J. Chiou

We present correction factors that may be applied to the ground motion prediction relations of Abrahamson and Silva, Boore and Atkinson, Campbell and Bozorgnia, and Chiou and Youngs (all in this volume) to model the azimuthally varying distribution of the GMRotI50 component of ground motion (commonly called “directivity”) around earthquakes. Our correction factors may be used for planar or nonplanar faults having any dip or slip rake (faulting mechanism). Our correction factors predict directivity-induced variations of spectral acceleration that are roughly half of the strike-slip variations predicted by Somerville et. al. (1997), and use of our factors reduces record-to-record sigma by about 2–20% at 5 sec or greater period.


1982 ◽  
Vol 72 (2) ◽  
pp. 615-636
Author(s):  
Robert F. Nau ◽  
Robert M. Oliver ◽  
Karl S. Pister

Abstract This paper describes models used to simulate earthquake accelerograms and analyses of these artificial accelerogram records for use in structural response studies. The artificial accelerogram records are generated by a class of linear linear difference equations which have been previously identified as suitable for describing ground motions. The major contributions of the paper are the use of Kalman filters for estimating time-varying model parameters, and the development of an effective nonparametric method for estimating the variance envelopes of the accelerogram records.


2021 ◽  
Vol 14 (18) ◽  
Author(s):  
Anjali Chandrashekhar Dhabu ◽  
Raghukanth Srimath Tirumala Gudimella

Sign in / Sign up

Export Citation Format

Share Document