scholarly journals DESIGN OF HIGH RISE SEISMIC ISOLATED STEEL BUILDING WITH MEGA-BRACING SYSTEM(Structures)

2005 ◽  
Vol 11 (22) ◽  
pp. 217-222 ◽  
Author(s):  
Takeshi KIKUCHI ◽  
Satoru FUJIMORI ◽  
Toru TAKEUCHI ◽  
Akira WADA

1970 ◽  
Vol 4 (2) ◽  
pp. 97-108
Author(s):  
Shalaka Dhokane ◽  
K. K. Pathak

A soft storey or a weak storey is one in which the lateral stiffness is less than 70 percent of that in the storey above or it can be less than 80 percent of the average lateral stiffness of the three stories above. For the reduction of lateral deflection of a structure, a bracing system is provided. In seismic design of structure and in high rise structure, the provision of bracing system has become more effective. So this paper aims to find out the effect of bracing on soft storey of steel building. In this paper, G+9 steel frames are modeled with different type of bracing pattern and different combination of soft story using software STAAD Pro. Effect of these different bracings on soft storey is studied for different parameter like column displacement, maximum deflection, storey drift, maximum bending moment, maximum axial force and maximum shear force. From the observed result best type of bracing will be selected.



2014 ◽  
Vol 102 (20) ◽  
pp. 1722-1725
Author(s):  
Karl Rubenacker ◽  
Ramon Gilsanz ◽  
Philip Murray ◽  
Eugene Kim


Mathematics ◽  
2021 ◽  
Vol 9 (15) ◽  
pp. 1758
Author(s):  
Koji Tsuchimoto ◽  
Yasutaka Narazaki ◽  
Billie F. Spencer

After a major seismic event, structural safety inspections by qualified experts are required prior to reoccupying a building and resuming operation. Such manual inspections are generally performed by teams of two or more experts and are time consuming, labor intensive, subjective in nature, and potentially put the lives of the inspectors in danger. The authors reported previously on the system for a rapid post-earthquake safety assessment of buildings using sparse acceleration data. The proposed framework was demonstrated using simulation of a five-story steel building modeled with three-dimensional nonlinear analysis subjected to historical earthquakes. The results confirmed the potential of the proposed approach for rapid safety evaluation of buildings after seismic events. However, experimental validation on large-scale structures is required prior to field implementation. Moreover, an extension to the assessment of high-rise buildings, such as those commonly used for residences and offices in modern cities, is needed. To this end, a 1/3-scale 18-story experimental steel building tested on the shaking table at E-Defense in Japan is considered. The importance of online model updating of the linear building model used to calculate the Damage Sensitive Features (DSFs) during the operation is also discussed. Experimental results confirm the efficacy of the proposed approach for rapid post-earthquake safety evaluation for high-rise buildings. Finally, a cost-benefit analysis with respect to the number of sensors used is presented.



2021 ◽  
Vol 11 (19) ◽  
pp. 9253
Author(s):  
Ahmad Naqi ◽  
Tathagata Roy ◽  
Taiki Saito

This study investigates the cumulative damage of a 20-story high-rise steel building equipped with buckling-restrained braces (BRB) under the likely occurrence of earthquake and wind events in the design life of the building. The objective of this research is to introduce a method for evaluating the cumulative damage of BRBs under multi-hazard events that are expected to occur during the service life of a high-rise building in order to achieve a safer building. A methodology is proposed using a Poisson point process to estimate the timeline of earthquake and wind events, wherein the events are assumed to be independent in nature. The 20-story high-rise steel building with BRBs is designed according to the Japanese standard and analyzed using the finite element approach, considering nonlinearities in the structural elements and BRBs. The building is analyzed consecutively using the timeline of earthquakes and winds, and the results are compared with those under individual earthquakes and winds. In addition to the responses of the frame such as the floor displacement and acceleration, the damage of BRBs in terms of the damage index, the energy absorption, the plastic strain energy, and the maximum and cumulative ductility factor are evaluated. It is observed that the BRB’s fatigue life under multi-hazard scenarios is a multi-criteria issue that requires more precise investigation. Moreover, the overall building’s performance and BRB’s cumulative damage induced by the sequence of events in the design life of the building is significantly larger than that under an individual event.



2016 ◽  
Vol 10 (5) ◽  
pp. 253-262 ◽  
Author(s):  
Changhao Zhang ◽  
Jianhu Feng ◽  
Xuntao Wang




Author(s):  
Harsh Rana ◽  
Dr. Darshana R. Bhatt ◽  
Dr. Snehal V. Mevada ◽  


Sign in / Sign up

Export Citation Format

Share Document