Well-Production Data and Gas-Reservoir Heterogeneity -- Reserve Growth Applications

2003 ◽  
2021 ◽  
Author(s):  
Vil Syrtlanov ◽  
Yury Golovatskiy ◽  
Ivan Ishimov

Abstract In this paper the simplified way is proposed for predicting the dynamics of liquid production and estimating the parameters of the oil reservoir using diagnostic curves, which are a generalization of analytical approaches, partially compared with the results of calculations on 3D simulation models and with actual well production data.


2014 ◽  
Vol 962-965 ◽  
pp. 570-573
Author(s):  
Jian Yan ◽  
Xiao Bing Liang ◽  
Qian Wu ◽  
Qing Guo

Because of the gas slippage, the testing methods of stress sensitivity for gas reservoir should be different from that for oil reservoir. This text adopts the method that imposing back pressure on the outlet of testing core to weaken the gas slippage effect and tests the stress sensitivity of low permeability gas reservoirs, then analyzes the influence of permeability and water saturation on stress sensitivity. The results show that: low permeable and water-bearing gas reservoirs have strong stress sensitivity; the testing permeability has the power function relationship with net stress, compared to the exponential function, the fitting correlation coefficient is larger and more suited to the actual; the lower the permeability is and the higher water saturation is, the stronger the stress sensitivity is. The production of gas well is affected when considering the stress sensitivity, so the pressure dropping rate should be reasonable when low permeable gas reservoirs are developed. The results provide theoretical references for analyzing the well production and numerical simulation.


2019 ◽  
Author(s):  
Shaibu Mohammed ◽  
Prosper Anumah ◽  
Justice Sarkodie-Kyeremeh ◽  
Anthony Morgan ◽  
Emmanuel Acheaw

Geofluids ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-17 ◽  
Author(s):  
Qi-guo Liu ◽  
Wei-hong Wang ◽  
Hua Liu ◽  
Guangdong Zhang ◽  
Long-xin Li ◽  
...  

Shale gas reservoir has been aggressively exploited around the world, which has complex pore structure with multiple transport mechanisms according to the reservoir characteristics. In this paper, a new comprehensive mathematical model is established to analyze the production performance of multiple fractured horizontal well (MFHW) in box-shaped shale gas reservoir considering multiscaled flow mechanisms (ad/desorption and Fick diffusion). In the model, the adsorbed gas is assumed not directly diffused into the natural macrofractures but into the macropores of matrix first and then flows into the natural fractures. The ad/desorption phenomenon of shale gas on the matrix particles is described by a combination of the Langmuir’s isothermal adsorption equation, continuity equation, gas state equation, and the motion equation in matrix system. On the basis of the Green’s function theory, the point source solution is derived under the assumption that gas flow from macropores into natural fractures follows transient interporosity and absorbed gas diffused into macropores from nanopores follows unsteady-state diffusion. The production rate expression of a MFHW producing at constant bottomhole pressure is obtained by using Duhamel’s principle. Moreover, the curves of well production rate and cumulative production vs. time are plotted by Stehfest numerical inversion algorithm and also the effects of influential factors on well production performance are analyzed. The results derived in this paper have significance to the guidance of shale gas reservoir development.


2001 ◽  
Vol 41 (1) ◽  
pp. 679
Author(s):  
S. Reymond ◽  
E. Matthews ◽  
B. Sissons

This case study illustrates how 3D generalised inversion of seismic facies for reservoir parameters can be successfully applied to image and laterally predict reservoir parameters in laterally discontinuous turbiditic depositional environment where hydrocarbon pools are located in complex combined stratigraphic-structural traps. Such conditions mean that structural mapping is inadequate to define traps and to estimate reserves in place. Conventional seismic amplitude analysis has been used to aid definition but was not sufficient to guarantee presence of economic hydrocarbons in potential reservoir pools. The Ngatoro Field in Taranaki, New Zealand has been producing for nine years. Currently the field is producing 1,000 bopd from seven wells and at three surface locations down from a peak of over 1,500 bopd. The field production stations have been analysed using new techniques in 3D seismic imaging to locate bypassed oils and identify undrained pools. To define the objectives of the study, three questions were asked:Can we image reservoir pools in a complex stratigraphic and structural environment where conventional grid-based interpretation is not applicable due to lack of lateral continuity in reservoir properties?Can we distinguish fluids within each reservoir pools?Can we extrapolate reservoir parameters observed at drilled locations to the entire field using 3D seismic data to build a 3D reservoir model?Using new 3D seismic attributes such as bright spot indicators, attenuation and edge enhancing volumes coupled with 6 AVO (Amplitude Versus Offset) volumes integrated into a single class cube of reservoir properties, made the mapping of reservoir pools possible over the entire data set. In addition, four fluid types, as observed in more than 20 reservoir pools were validated by final inverted results to allow lateral prediction of fluid contents in un-drilled reservoir targets. Well production data and 3D seismic inverted volume were later integrated to build a 3D reservoir model to support updated volumetrics reserves computation and to define additional targets for exploration drilling, additional well planning and to define a water injection plan for pools already in production.


Sign in / Sign up

Export Citation Format

Share Document