scholarly journals Implications for earthquake risk reduction in the United States from the Kocaeli, Turkey, earthquake of August 17, 1999

Circular ◽  
2000 ◽  
Author(s):  
2015 ◽  
pp. 1078-7275.EEG-1756
Author(s):  
Jerome V. DeGraff ◽  
William Burns ◽  
Vicki McConnell

2020 ◽  
Vol 91 (3) ◽  
pp. 1763-1775 ◽  
Author(s):  
Monica D. Kohler ◽  
Deborah E. Smith ◽  
Jennifer Andrews ◽  
Angela I. Chung ◽  
Renate Hartog ◽  
...  

Abstract The ShakeAlert earthquake early warning system is designed to automatically identify and characterize the initiation and rupture evolution of large earthquakes, estimate the intensity of ground shaking that will result, and deliver alerts to people and systems that may experience shaking, prior to the occurrence of shaking at their location. It is configured to issue alerts to locations within the West Coast of the United States. In 2018, ShakeAlert 2.0 went live in a regional public test in the first phase of a general public rollout. The ShakeAlert system is now providing alerts to more than 60 institutional partners in the three states of the western United States where most of the nation’s earthquake risk is concentrated: California, Oregon, and Washington. The ShakeAlert 2.0 product for public alerting is a message containing a polygon enclosing a region predicted to experience modified Mercalli intensity (MMI) threshold levels that depend on the delivery method. Wireless Emergency Alerts are delivered for M 5+ earthquakes with expected shaking of MMI≥IV. For cell phone apps, the thresholds are M 4.5+ and MMI≥III. A polygon format alert is the easiest description for selective rebroadcasting mechanisms (e.g., cell towers) and is a requirement for some mass notification systems such as the Federal Emergency Management Agency’s Integrated Public Alert and Warning System. ShakeAlert 2.0 was tested using historic waveform data consisting of 60 M 3.5+ and 25 M 5.0+ earthquakes, in addition to other anomalous waveforms such as calibration signals. For the historic event test, the average M 5+ false alert and missed event rates for ShakeAlert 2.0 are 8% and 16%. The M 3.5+ false alert and missed event rates are 10% and 36.7%. Real-time performance metrics are also presented to assess how the system behaves in regions that are well-instrumented, sparsely instrumented, and for offshore earthquakes.


Daedalus ◽  
2020 ◽  
Vol 149 (2) ◽  
pp. 84-100
Author(s):  
Linton F. Brooks

For almost half a century, the United States and the Soviet Union/Russian Federation have used arms control treaties to help regulate their nuclear relationship. The current such agreement, the 2011 New START treaty, expires in 2021, although the signatories can extend it until 2026. Because of mutual mistrust and incompatible positions on what to include in a follow-on agreement, New START will probably expire without a replacement. This essay examines the reasons for the demise of treaty-based arms control, reviews what will actually be lost by such a demise, and suggests some mitigation measures. It argues for a broader conception of arms control to include all forms of cooperative risk reduction and proposes new measures to prevent inadvertent escalation in crises.


2009 ◽  
Vol 1193 ◽  
Author(s):  
Kurt D. Gerdes ◽  
Steven L. Ross

The year 2009 marks 20 years since the Environmental Management program was first established in the Department of Energy. At that time, nearly 50 years of nuclear activity had left a legacy that included nuclear waste and environmental contamination at more than 100 sites across the United States. The extent of the risk to our citizens and communities was unknown, and certainly many of the processes and technologies to reduce that risk had not yet been invented. Since then, the Department of Energy has closed 86 of 108 sites originally assigned to the program nationwide. The Department of Energy has packaged and safely stored the nation’s entire excess plutonium inventory. The Department has pioneered new technologies that have allowed progress in retrieving millions of liters of tank waste and safely disposing of tens of thousands of cubic meters of transuranic waste. In Fiscal years 2006 and 2007 alone, the Department of Energy demolished approximately 500 buildings (nuclear, radioactive, and industrial) as part of our decontamination and decommissioning projects. Finally, there have been great strides in restoring groundwater contaminated with radionuclides using innovative treatment systems. In August 2005, a rigorous project management system was instituted. This Department of Energy program was built on the principle of prioritizing risk reduction supported by our four guiding tenets of safety, performance, clean-up, and closure. The mission activities at our clean-up sites are targeted at our highest risk activities. In planning its environmental clean-up efforts and developing the budget for those activities, the Department seeks to focus on work that will produce the greatest environmental benefit and the largest amount of risk reduction.


Sign in / Sign up

Export Citation Format

Share Document