scholarly journals Groundwater-quality data for a treated-wastewater plume near the Massachusetts Military Reservation, Ashumet Valley, Cape Cod, Massachusetts, 2006-08

Data Series ◽  
10.3133/ds648 ◽  
2012 ◽  
Author(s):  
Jennifer G. Savoie ◽  
Denis R. LeBlanc ◽  
Gillian M. Fairchild ◽  
Richard L. Smith ◽  
Douglas B. Kent ◽  
...  
Data Series ◽  
10.3133/ds198 ◽  
2006 ◽  
Author(s):  
Jennifer G. Savoie ◽  
Richard L. Smith ◽  
Douglas B. Kent ◽  
Kathryn M. Hess ◽  
Denis R. LeBlanc ◽  
...  

Water ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 1952
Author(s):  
Subrata Halder ◽  
Lingaraj Dhal ◽  
Madan K. Jha

Providing sustainable water supply for domestic needs and irrigated agriculture is one of the most significant challenges for the current century. This challenge is more daunting in coastal regions. Groundwater plays a pivotal role in addressing this challenge and hence, it is under growing stress in several parts of the world. To address this challenge, a proper understanding of groundwater characteristics in an area is essential. In this study, spatio-temporal analyses of pre-monsoon and post-monsoon groundwater-levels of two coastal aquifer systems (upper leaky confined and underlying confined) were carried out in Purba Medinipur District, West Bengal, India. Trend analysis of seasonal groundwater-levels of the two aquifers systems was also performed using Mann-Kendall test, Linear Regression test, and Innovative Trend test. Finally, the status of seawater intrusion in the two aquifers was evaluated using available groundwater-quality data of Chloride (Cl−) and Total Dissolve Solids (TDS). Considerable spatial and temporal variability was found in the seasonal groundwater-levels of the two aquifers. Further, decreasing trends were spotted in the pre-monsoon and post-monsoon groundwater-level time series of the leaky confined and confined aquifers, except pre-monsoon groundwater-levels in Contai-I and Deshpran blocks, and the post-monsoon groundwater-level in Ramnagar-I block for the leaky confined aquifer. The leaky confined aquifer in Contai-I, Contai-III, and Deshpran blocks and the confined aquifer in Nandigram-I and Nandigram-II blocks are vulnerable to seawater intrusion. There is an urgent need for the real-time monitoring of groundwater-levels and groundwater quality in both the aquifer systems, which can ensure efficient management of coastal groundwater reserves.


2020 ◽  
Vol 2020 ◽  
pp. 1-6
Author(s):  
Banan Hejaz ◽  
Issam A. Al-Khatib ◽  
Nidal Mahmoud

Like several parts in the Middle East, the West Bank is in a significant water scarcity status. Palestinians use groundwater as the main water source, supplying more than 90% of the consumed water in the West Bank. The aim of this study is to enhance the knowledge on drinking water quality in the West Bank. Groundwater quality data was obtained from the Palestinian Water Authority, including the years 2015 and 2016, from the Northern six districts of the West Bank. The water quality data were analyzed and matched with the World Health Organization (WHO) guidelines and the Palestinian standards for drinking water quality. The findings of this study revealed that groundwater in the north of the West Bank comply with several drinking water requirements including total hardness, pH, and sodium and chloride content. Conversely, 18% of the samples exceed the limits for nitrate concentration. The fecal Coliforms and total Coliforms results show that 98.7% of the samples give no risk, but 1.3% of the samples give low risk, and no sample gives intermediate-to-high risks. The microbial and chemical pollution of groundwater is postulated to inadequate wastewater management, high use of fertilizers, and uncontrolled disposal of animal manure. Therefore, it is crucial to disinfect drinking water at the source of production before supply as an immediate action, followed by implementing pollution prevention measures.


Sign in / Sign up

Export Citation Format

Share Document