scholarly journals Investigating Groundwater Condition and Seawater Intrusion Status in Coastal Aquifer Systems of Eastern India

Water ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 1952
Author(s):  
Subrata Halder ◽  
Lingaraj Dhal ◽  
Madan K. Jha

Providing sustainable water supply for domestic needs and irrigated agriculture is one of the most significant challenges for the current century. This challenge is more daunting in coastal regions. Groundwater plays a pivotal role in addressing this challenge and hence, it is under growing stress in several parts of the world. To address this challenge, a proper understanding of groundwater characteristics in an area is essential. In this study, spatio-temporal analyses of pre-monsoon and post-monsoon groundwater-levels of two coastal aquifer systems (upper leaky confined and underlying confined) were carried out in Purba Medinipur District, West Bengal, India. Trend analysis of seasonal groundwater-levels of the two aquifers systems was also performed using Mann-Kendall test, Linear Regression test, and Innovative Trend test. Finally, the status of seawater intrusion in the two aquifers was evaluated using available groundwater-quality data of Chloride (Cl−) and Total Dissolve Solids (TDS). Considerable spatial and temporal variability was found in the seasonal groundwater-levels of the two aquifers. Further, decreasing trends were spotted in the pre-monsoon and post-monsoon groundwater-level time series of the leaky confined and confined aquifers, except pre-monsoon groundwater-levels in Contai-I and Deshpran blocks, and the post-monsoon groundwater-level in Ramnagar-I block for the leaky confined aquifer. The leaky confined aquifer in Contai-I, Contai-III, and Deshpran blocks and the confined aquifer in Nandigram-I and Nandigram-II blocks are vulnerable to seawater intrusion. There is an urgent need for the real-time monitoring of groundwater-levels and groundwater quality in both the aquifer systems, which can ensure efficient management of coastal groundwater reserves.

Water ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 51
Author(s):  
Kyoochul Ha ◽  
Eunhee Lee ◽  
Hyowon An ◽  
Sunghyun Kim ◽  
Changhui Park ◽  
...  

This study was conducted to evaluate seasonal groundwater quality due to groundwater pumping and hydrochemical characteristics with groundwater level fluctuations in an agricultural area in Korea. Groundwater levels were observed for about one year using automatic monitoring sensors, and groundwater uses were estimated based on the monitoring data. Groundwater use in the area is closely related to irrigation for rice farming, and rising groundwater levels occur during the pumping, which may be caused by the irrigation water of rice paddies. Hydrochemical analysis results for two separate times (17 July and 1 October 2019) show that the dissolved components in groundwater decreased overall due to dilution, especially at wells in the alluvial aquifer and shallow depth. More than 50% of the samples were classified as CaHCO3 water type, and changes in water type occurred depending on the well location. Water quality changes were small at most wells, but changes at some wells were evident. In addition, the groundwater quality was confirmed to have the effect of saltwater supplied during the 2018 drought by comparison with seawater. According to principal component analysis (PCA), the water quality from July to October was confirmed to have changed due to dilution, and the effect was strong at shallow wells. In the study areas where rice paddy farming is active in summer, irrigation water may be one of the important factors changing the groundwater quality. These results provide a qualitative and quantitative basis for groundwater quality change in agricultural areas, particularly rice paddies areas, along with groundwater level and usage.


2018 ◽  
Vol 246 ◽  
pp. 02047
Author(s):  
Shunfu Zhang ◽  
Changjun Liu ◽  
Chuanke Li ◽  
Sili Long ◽  
Jian Zhou ◽  
...  

To relieve the drop of groundwater and seawater intrusion in Weizhou Island caused by overexploitation, the analysis model of precipitation-runoff and variable-density groundwater flow in Weizhou Island was established and the model’s parameter identification results were used to investigate groundwater level and seawater/freshwater interface changes under different groundwater exploitation plans. Thereafter, a rational groundwater exploitation plan could be made to prevent the lowering of groundwater levels caused by ground water overexploitation and ecological deterioration caused by seawater intrusion. This could help accelerating the recovery of ground water and maintaining ecological system.


Water ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3555
Author(s):  
Huzaifa Shahzad ◽  
Hafiz Umar Farid ◽  
Zahid Mahmood Khan ◽  
Muhammad Naveed Anjum ◽  
Ijaz Ahmad ◽  
...  

The rapidly changing climatic scenario is demanding periodic evaluation of groundwater quality at the temporal and spatial scale in any region for its effectual management. The statistical, geographic information system (GIS), geostatistical, and map overlay approaches were applied for investigating the spatio-temporal variation in groundwater quality and level data of 242 monitoring wells in Punjab, Pakistan during pre-monsoon and post-monsoon seasons of the years 2015 and 2016. The analysis indicated the higher variation in data for both the seasons (pre-monsoon and post-monsoon) as coefficient of variation (CV) values were found in the range of 84–175% for groundwater quality parameters. Based on the t-test values, the marginal improvement in groundwater electrical conductivity (EC), sodium absorption ratio (SAR) and residual sodium carbonate (RSC) and decrease in groundwater level (GWL) were observed in 2016 as compared to 2015 (p = 0.05). The spatial distribution analysis of groundwater EC, SAR and RSC indicated that the groundwater quality was unfit for irrigation in the lower south-east part of the study area. The groundwater level (GWL) was also higher in that part of the study area during the pre-monsoon and post-monsoon seasons in 2015 and 2016. The overlay analysis also indicated that the groundwater EC, RSC and GWL values were higher in south-east parts of the study area during pre-monsoon and post-monsoon seasons of 2015 and 2016. Hence, there is an instant need to apply groundwater management practices in the rest of the region (especially in the lower south-east part) to overcome the future degradation of groundwater quality.


2020 ◽  
Author(s):  
Carolina Guardiola-Albert ◽  
Nuria Naranjo-Fernández ◽  
Héctor Aguilera ◽  
Esperanza Montero-González

<p>Nowadays, the application of time series clustering is increasing in hydrogeology works. Groundwater level long data series provides a useful record to identify different hydrological behaviors and to validate the conceptual model of groundwater flow in aquifer systems. Piezometers also register the response to any changes that directly affect the amount of available groundwater resources (recharge or exploitation).</p><p>What are the expected variations of groundwater levels in an aquifer under high exploitation pressure? In this work, groundwater level time series from 160 piezometers in the hydrological years from 1975 to 2016 were analyzed. Especially, 24 piezometers are deeply studied. Data were preprocessed and transformed: selection of points, missing data imputation and data standardization. Visual clustering, k-means clustering and time series clustering were applied to classify groundwater level hydrographs using the available database. Six and seven groups of piezometers were identified to be associated with the different hydrofacies and extraction rates. Time series clustering was found to be the best method to analyze the studied piezometric database. Moreover, it was possible to characterize actual hydrodynamics, which will be useful for groundwater managers to make sustainable decisions.</p>


2017 ◽  
Vol 2017 ◽  
pp. 1-16 ◽  
Author(s):  
Aamir Shakoor ◽  
Zahid Mahmood Khan ◽  
Muhammad Arshad ◽  
Hafiz Umar Farid ◽  
Muhammad Sultan ◽  
...  

The intensive abstraction of groundwater is causing a number of problems such as groundwater depletion and quality deterioration. To manage such problems, the data of 256 piezometers regarding groundwater levels and quality were acquired for the period of 2003 to 2012 in command area of Lower Chenab Canal (LCC), West Faisalabad, Pakistan. MODFLOW and MT3D models were calibrated for the period of 2003–2007 and validated for years 2008–2012 with respect to observed groundwater levels and quality data, respectively. After the successful calibration and validation, two pumping scenarios were developed up to year 2030: Scenario I (increase in pumping rate according to the historical trend) and Scenario II (adjusted canal water supplies and groundwater patterns). The predicted results of Scenario I revealed that, up to year 2030, the area under good quality groundwater reduced significantly from 50.35 to 28.95%, while marginal and hazardous groundwater quality area increased from 49.65 to 71.06%. Under Scenario II, the good quality groundwater area increased to 6.32% and 12.48% area possesses less hazardous quality of groundwater. It was concluded that the canal water supply should shift from good quality aquifer zone to poor quality aquifer zone for proficient management of groundwater at the study area.


Water SA ◽  
2020 ◽  
Vol 46 (4 October) ◽  
Author(s):  
Safieh Javadinejad ◽  
Rebwar Dara ◽  
Forough Jafary

Estimating groundwater level (GWL) fluctuations is a vital requirement in hydrology and hydraulic engineering, and is commonly addressed through artificial intelligence (AI) models. The purpose of this research was to estimate groundwater levels using new modelling methods. The implementation of two separate soft computing techniques, a multilayer perceptron neural network (MLPNN) and an M5 model tree (M5-MT), was examined. The models are used in the estimation of monthly GWLs observed in a shallow unconfined coastal aquifer. Data for the water level were collected from observation wells located near Ganjimatta, India, and used to estimate GWL fluctuation. To do this, two scenarios were provided to achieve optimal input variables for modelling the GWL at the present time. The input parameters applied for developing the proposed models were a monthly time-series of summed rainfall, the mean temperature (within its lag times that have an effect on groundwater), and historical GWL observations throughout the period 1996–2006. The efficiency of each proposed model for Ganjimatt was investigated in stages of trial and error. A performance evaluation showed that the M5-MT outperformed the MLPNN model in estimating the GWL in the aquifer case study. Based on the M5-MT approach, the development of this model gives acceptable results for the Indian coastal aquifers. It is recommended that water managers and decision makers apply these new methods to monitor groundwater conditions and inform future planning.


Geosciences ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 223 ◽  
Author(s):  
Yi Liu ◽  
Jiang Li ◽  
Zheng N. Fang

As much as 3.05 m of land subsidence was observed in 1979 in the Houston-Galveston region as a result primarily of inelastic compaction of aquitards in the Chicot and Evangeline aquifers between 1937 and 1979. The preconsolidation pressure heads for aquitards within these two aquifers were continuously updated in response to lowering groundwater levels, which in turn was caused by continuously increasing groundwater withdrawal rates from 0.57 to 4.28 million m3/day. This land subsidence occurred without any management of changes in groundwater levels. However, the management of recovering groundwater levels from 1979 to 2000 successfully decreased inelastic compaction from about 40 mm/yr in the early 1980s to zero around 2000 through decreasing groundwater withdrawal rates from 4.3 to 3.0 million m3/day. The inelastic consolidation that had existed for about 63 years roughly from 1937 to 2000 caused a land subsidence hazard in this region. Some rebounding of the land surface was achieved from groundwater level recovering management. It is found in this paper that subsidence of 0.08 to 8.49 mm/yr owing to a pseudo-constant secondary consolidation rate emerged or tended to emerge at 13 borehole extensometer station locations while the groundwater levels in the two aquifers were being managed. It is considered to remain stable in trend since 2000. The subsidence due to the secondary consolidation is beyond the control of any groundwater level change management schemes because it is caused by geo-historical overburden pressure on the two aquifers. The compaction measurements collected from the 13 extensometers since 1971 not only successfully corroborate the need for groundwater level change management in controlling land subsidence but also yield the first empirical findings of the occurrence of secondary consolidation subsidence in the Quaternary and Tertiary aquifer systems in the Houston-Galveston region.


Water ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 2343 ◽  
Author(s):  
Woo-Dong Lee ◽  
Young-Jae Yoo ◽  
Yeon-Myeong Jeong ◽  
Dong-Soo Hur

In this study, hydraulic model experiments were conducted to measure the saltwater–freshwater equilibrium interface in a coastal aquifer with underground obstructions such as an impermeable seawall. To analyse the hydraulic characteristics inside the coastal aquifer, numerical analysis was conducted using a non-hydrostatic Navier-Stokes solver based on the Porous Body Model (PBM), which can directly analyse groundwater flow. A unique saltwater–freshwater equilibrium interface that does not appear in typical coastal aquifer analyses was observed in a sandy tank experiment. In the experiment, the rise of the groundwater level behind the seawall increased the pressure gradient and groundwater flow rate, causing the saltwater–freshwater interface to move towards the sea and a freshwater region to form on the seabed in front of the seawall. The numerical analysis enabled close examination of the groundwater level distribution, groundwater flow, seawater–freshwater interface, and pore water pressure characteristics of the coastal aquifer with underground obstructions. The sandy tank experiment also provided an understanding of the hydraulic characteristics of groundwater in the coastal aquifer with a seawall, which previously could not be accurately analysed. The experimental and analytical results demonstrated that the rise of groundwater level due to underground obstructions in the coastal aquifer increased the pressure gradient and groundwater flow rate and slowed seawater intrusion. This principle can be employed to sufficiently reduce seawater intrusion of coastal aquifers.


Water ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 537
Author(s):  
Paúl Carrión-Mero ◽  
F. Javier Montalván ◽  
Fernando Morante-Carballo ◽  
Javier Heredia ◽  
F. Javier Elorza ◽  
...  

Coastal aquifers are strategic and fundamental in the development of touristic areas. The coastal aquifer within the Manglaralto River Basin in Ecuador is essential, as it is the only source of water supply for a large part of the northern part of the Santa Elena province. It is a semi-arid region where high volumes of water are pumped from the aquifer, causing a significant drawdown of groundwater levels, thus affecting the water quality. This work aims to characterize the characteristics of groundwater in the coastal aquifer using hydrochemistry and stable isotopes to propose a hydrogeological conceptual model. The methodology for determining the chemical and isotopic characteristics of groundwater follows the following scheme: (i) studies of ionic concentrations using the Piper diagram, (ii) assessment of the origin of salinity through the Cl/Br ratio, the presence of seawater intrusion through the Hydrochemical Facies Evolution Diagram HFE-D, (iii) characterization of precipitation events using stable isotopes (18O and 2H), and, (iv) development of a hydrogeological conceptual model of the study area. The results indicate that in the basin there are mixing processes of the existing water in the aquifer with recharge water, direct cation exchange processes in the freshening process during recharge, and evaporation in the unsaturated zone. A conceptual model of the flow system in the basin is built, based on the mentioned processes. The main conclusions are: seawater intrusion is present in the areas of the wells located closest to the coast, urban activity through septic tanks is affecting the quality of the aquifer, and rainfall is highly relevant in the different hydrochemical and isotopic processes that operate in the basin.


Sign in / Sign up

Export Citation Format

Share Document