Map showing bottom topography of the Pacific Continental Margin, Strait of Juan de Fuca to Cape Mendocino

1992 ◽  
1995 ◽  
Vol 11 (1) ◽  
pp. 1-18 ◽  
Author(s):  
Brian F. Atwater ◽  
Alan R. Nelson ◽  
John J. Clague ◽  
Gary A. Carver ◽  
David K. Yamaguchi ◽  
...  

Earthquakes in the past few thousand years have left signs of land-level change, tsunamis, and shaking along the Pacific coast at the Cascadia subduction zone. Sudden lowering of land accounts for many of the buried marsh and forest soils at estuaries between southern British Columbia and northern California. Sand layers on some of these soils imply that tsunamis were triggered by some of the events that lowered the land. Liquefaction features show that inland shaking accompanied sudden coastal subsidence at the Washington-Oregon border about 300 years ago. The combined evidence for subsidence, tsunamis, and shaking shows that earthquakes of magnitude 8 or larger have occurred on the boundary between the overriding North America plate and the downgoing Juan de Fuca and Gorda plates. Intervals between the earthquakes are poorly known because of uncertainties about the number and ages of the earthquakes. Current estimates for individual intervals at specific coastal sites range from a few centuries to about one thousand years.


2021 ◽  
pp. M55-2018-68 ◽  
Author(s):  
Philip T. Leat ◽  
Teal R. Riley

AbstractThe Antarctic Peninsula contains a record of continental-margin volcanism extending from Jurassic to Recent times. Subduction of the Pacific oceanic lithosphere beneath the continental margin developed after Late Jurassic volcanism in Alexander Island that was related to extension of the continental margin. Mesozoic ocean-floor basalts emplaced within the Alexander Island accretionary complex have compositions derived from Pacific mantle. The Antarctic Peninsula volcanic arc was active from about Early Cretaceous times until the Early Miocene. It was affected by hydrothermal alteration, and by regional and contact metamorphism generally of zeolite to prehnite–pumpellyite facies. Distinct geochemical groups recognized within the volcanic rocks suggest varied magma generation processes related to changes in subduction dynamics. The four groups are: calc-alkaline, high-Mg andesitic, adakitic and high-Zr, the last two being described in this arc for the first time. The dominant calc-alkaline group ranges from primitive mafic magmas to rhyolite, and from low- to high-K in composition, and was generated from a mantle wedge with variable depletion. The high-Mg and adakitic rocks indicate periods of melting of the subducting slab and variable equilibration of the melts with mantle. The high-Zr group is interpreted as peralkaline and may have been related to extension of the arc.


2005 ◽  
Vol 35 (4) ◽  
pp. 474-488 ◽  
Author(s):  
Hideyuki Nakano ◽  
Hiroyasu Hasumi

Abstract A series of zonal currents in the Pacific Ocean is investigated using eddy-permitting ocean general circulation models. The zonal currents in the subsurface are classified into two parts: one is a series of broad zonal flows that has the meridional pattern slanting poleward with increasing depth and the other is finescale zonal jets with the meridional scale of 3°–5° formed in each broad zonal flow. The basic pattern for the broad zonal flows is similar between the coarse-resolution model and the eddy-permitting model and is thought to be the response to the wind forcing. A part of the zonal jets embedded in each zonal flow is explained by the anomalous local wind forcing. Most of them, however, seem to be mainly created by the rectification of turbulent processes on a β plane (the Rhines effect), and zonal jets in this study have common features with the zonally elongated flows obtained in previous modeling studies conducted in idealized basins. The position of zonal jets is not stable when the ocean floor is flat, whereas it oscillates only within a few degrees under realistic bottom topography.


Sign in / Sign up

Export Citation Format

Share Document