October 15, 1979, main-shock strong-motion records from the Meloland Road-Interstate Route 8 overcrossing, Imperial County, California

1980 ◽  
Author(s):  
Christopher Rojahn ◽  
J.T. Ragsdale ◽  
J.D. Raggett ◽  
J.H. Gates
2018 ◽  
Vol 12 (5-6) ◽  
pp. 72-80
Author(s):  
A. A. Krylov

In the absence of strong motion records at the future construction sites, different theoretical and semi-empirical approaches are used to estimate the initial seismic vibrations of the soil. If there are records of weak earthquakes on the site and the parameters of the fault that generates the calculated earthquake are known, then the empirical Green’s function can be used. Initially, the empirical Green’s function method in the formulation of Irikura was applied for main shock record modelling using its aftershocks under the following conditions: the magnitude of the weak event is only 1–2 units smaller than the magnitude of the main shock; the focus of the weak event is localized in the focal region of a strong event, hearth, and it should be the same for both events. However, short-termed local instrumental seismological investigation, especially on seafloor, results usually with weak microearthquakes recordings. The magnitude of the observed micro-earthquakes is much lower than of the modeling event (more than 2). To test whether the method of the empirical Green’s function can be applied under these conditions, the accelerograms of the main shock of the earthquake in L'Aquila (6.04.09) with a magnitude Mw = 6.3 were modelled. The microearthquake with ML = 3,3 (21.05.2011) and unknown origin mechanism located in mainshock’s epicentral zone was used as the empirical Green’s function. It was concluded that the empirical Green’s function is to be preprocessed. The complex Fourier spectrum smoothing by moving average was suggested. After the smoothing the inverses Fourier transform results with new Green’s function. Thus, not only the amplitude spectrum is smoothed out, but also the phase spectrum. After such preliminary processing, the spectra of the calculated accelerograms and recorded correspond to each other much better. The modelling demonstrate good results within frequency range 0,1–10 Hz, considered usually for engineering seismological studies.


1981 ◽  
Vol 71 (1) ◽  
pp. 95-116 ◽  
Author(s):  
Allan G. Lindh ◽  
David M. Boore

abstract A reanalysis of the available data for the 1966 Parkfield, California, earthquake (ML=512) suggests that although the ground breakage and aftershocks extended about 40 km along the San Andreas Fault, the initial dynamic rupture was only 20 to 25 km in length. The foreshocks and the point of initiation of the main event locate at a small bend in the mapped trace of the fault. Detailed analysis of the P-wave first motions from these events at the Gold Hill station, 20 km southeast, indicates that the bend in the fault extends to depth and apparently represents a physical discontinuity on the fault plane. Other evidence suggests that this discontinuity plays an important part in the recurrence of similar magnitude 5 to 6 earthquakes at Parkfield. Analysis of the strong-motion records suggests that the rupture stopped at another discontinuity in the fault plane, an en-echelon offset near Gold Hill that lies at the boundary on the San Andreas Fault between the zone of aseismic slip and the locked zone on which the great 1857 earthquake occurred. Foreshocks to the 1857 earthquake occurred in this area (Sieh, 1978), and the epicenter of the main shock may have coincided with the offset zone. If it did, a detailed study of the geological and geophysical character of the region might be rewarding in terms of understanding how and why great earthquakes initiate where they do.


1996 ◽  
Vol 86 (2) ◽  
pp. 519-523
Author(s):  
Igor A. Beresnev ◽  
Kuo-Liang Wen

Abstract Spectral ratios between soft soil and reference rock sites are often used to predict the sedimentary site response to earthquakes. However, their relationship with the genuine site-specific amplification function is often unclear. We compare the soil-to-rock spectral ratios between the stations that are 3.3 km apart with the “genuine” response given by the ratios between the surface and 17 and 47 m downhole. Data from the SMART1 array in Taiwan are used. The “weak” and “strong” motion records are addressed separately to allow for nonlinear soil response. The soil-to-rock spectral ratios are nearly identical to the “true” amplification at the frequencies from 1 to 10 Hz, if the finite depth of the borehole is taken into account. They correctly capture the strong-motion deamplification effect. However, the soil-to-rock spectral ratios are roughly 1.4 times more uncertain than surface-to-47-m ratios. In summary, the soil-to-rock spectral ratios can be considered as the reliable estimates of the real site response.


Sign in / Sign up

Export Citation Format

Share Document