scholarly journals Calibration of amplification factors using KiK-net strong-motion records: toward site effective estimation of seismic intensities

2007 ◽  
Vol 59 (10) ◽  
pp. 1111-1125 ◽  
Author(s):  
Takumi Hayashida ◽  
Fumiko Tajima
2009 ◽  
Vol 25 (3) ◽  
pp. 497-514 ◽  
Author(s):  
Maren Böse ◽  
Vladimir Sokolov ◽  
Friedemann Wenzel

We establish and test a shake map methodology for intermediate-depth Vrancea earthquakes, based on seismological information gathered in Romania during recent years. We use region- (azimuth-) dependent attenuation relations derived from stochastic simulations of ground motions using spectral models of Vrancea earthquakes. Both region boundaries and Fourier amplification spectra for the characterization of seismic site effects are based on several hundred weak, moderate and strong-motion records and macroseismic intensity maps. We determine region-specific, magnitude- and distance-dependent amplification factors of peak values and instrumental intensity relative to rock. We interpolate recorded ground motions and ground motion estimates from the obtained amplification factors and attenuation relations for rock conditions. The resulting shake maps show a good agreement with macroseismic descriptions of moderate-sized and large Vrancea earthquakes, demonstrating the feasibility of a seismological approach to shake map generation. Unlike previous methodologies, this approach requires neither expensive assessments of geology-dependent site amplification factors, nor large numbers of strong-motion records. Our results are in good agreement with empirical topographic slope-site amplification relations, but give a better reflection of the abnormal attenuation of seismic waves in the Transylvanian region and the strong amplification in the Focsani basin.


1996 ◽  
Vol 86 (2) ◽  
pp. 519-523
Author(s):  
Igor A. Beresnev ◽  
Kuo-Liang Wen

Abstract Spectral ratios between soft soil and reference rock sites are often used to predict the sedimentary site response to earthquakes. However, their relationship with the genuine site-specific amplification function is often unclear. We compare the soil-to-rock spectral ratios between the stations that are 3.3 km apart with the “genuine” response given by the ratios between the surface and 17 and 47 m downhole. Data from the SMART1 array in Taiwan are used. The “weak” and “strong” motion records are addressed separately to allow for nonlinear soil response. The soil-to-rock spectral ratios are nearly identical to the “true” amplification at the frequencies from 1 to 10 Hz, if the finite depth of the borehole is taken into account. They correctly capture the strong-motion deamplification effect. However, the soil-to-rock spectral ratios are roughly 1.4 times more uncertain than surface-to-47-m ratios. In summary, the soil-to-rock spectral ratios can be considered as the reliable estimates of the real site response.


Sign in / Sign up

Export Citation Format

Share Document