Total-field aeromagnetic map of part of northern Maine

1993 ◽  
Author(s):  
Kevin R. Bond
Keyword(s):  
2020 ◽  
Vol 17 (9) ◽  
pp. 1498-1502 ◽  
Author(s):  
Runren Zhang ◽  
Zhenguan Wu ◽  
Qingtao Sun ◽  
Mingwei Zhuang ◽  
Qiang-Ming Cai ◽  
...  

Geophysics ◽  
1993 ◽  
Vol 58 (5) ◽  
pp. 756-756 ◽  
Author(s):  
Jean Roy

Vallee et al. (1992) remark on the sensitivity of airborne ratio measuring VLF instruments to platform attitude stability. The authors also remind the users of VLF total field amplitude data, as produced by instruments such as the Herz TOTEM, of two problems associated with this type of data: spatial and temporal fluctuations of the VLF primary field. They recommend the use of a dense network of VLF monitoring stations and numerical modeling of field propagation to cope with these problems. These two recommendations are briefly discussed here and one alternative recommendation is made.


2014 ◽  
Vol 926-930 ◽  
pp. 2777-2780
Author(s):  
Hong Yuan Fang ◽  
Jian Li ◽  
Jia Li

The second-order Lobatto IIIA-IIIB symplectic partitioned RungeKutta (SPRK) method, combining with the first-order Mur absorbing boundary condition, is developed for the simulation of ground penetrating radar wave propagation in layered pavement structure. For 2-dimetional case, a significant advantage of this method is that only two functions need to be calculated at each time step. The total-field/scattered-field technique is used for plane wave excitation. Numerical examples are presented to verify the accuracy and efficiency of the proposed algorithm. The results illustrate that the reflected signal calculated by the SPRK method is in good agreement with that obtained using the finite difference time domain (FDTD) scheme, but the CPU time consumed by proposed algorithm is reduce about 20% of the FDTD scheme. In addition, an actual field test is conducted to evaluate the further performance of the SPRK method. It is found that the simulated waveform fits well with the measured signal in many aspects, especially in the peak amplitude and time delay.


Geophysics ◽  
2019 ◽  
Vol 84 (2) ◽  
pp. B121-B133 ◽  
Author(s):  
Shida Sun ◽  
Chao Chen ◽  
Yiming Liu

We have developed a case study on the use of constrained inversion of magnetic data for recovering ore bodies quantitatively in the Macheng iron deposit, China. The inversion is constrained by the structural orientation and the borehole lithology in the presence of high magnetic susceptibility and strong remanent magnetization. Either the self-demagnetization effect caused by high susceptibility or strong remanent magnetization would lead to an unknown total magnetization direction. Here, we chose inversion of amplitude data that indicate low sensitivity to the direction of magnetization of the sources when constructing the underground model of effective susceptibility. To reduce the errors that arise when treating the total-field anomaly as the projection of an anomalous field vector in the direction of the geomagnetic reference field, we develop an equivalent source technique to calculate the amplitude data from the total-field anomaly. This equivalent source technique is based on the acquisition of the total-field anomaly, which uses the total-field intensity minus the magnitude of the reference field. We first design a synthetic model from a simplified real case to test the new approach, involving the amplitude data calculation and the constrained amplitude inversion. Then, we apply this approach to the real data. The results indicate that the structural orientation and borehole susceptibility bounds are compatible with each other and are able to improve the quality of the recovered model to obtain the distribution of ore bodies quantitatively and effectively.


2017 ◽  
Vol 10 (1) ◽  
pp. 1-21 ◽  
Author(s):  
Zhiming Chen ◽  
Guanghui Huang

AbstractWe propose a reliable direct imaging method based on the reverse time migration for finding extended obstacles with phaseless total field data. We prove that the imaging resolution of the method is essentially the same as the imaging results using the scattering data with full phase information when the measurement is far away from the obstacle. The imaginary part of the cross-correlation imaging functional always peaks on the boundary of the obstacle. Numerical experiments are included to illustrate the powerful imaging quality


Sign in / Sign up

Export Citation Format

Share Document