scholarly journals A model for evaluating stream temperature response to climate change in Wisconsin

Author(s):  
Jana S. Stewart ◽  
Stephen M. Westenbroek ◽  
Matthew G. Mitro ◽  
John D. Lyons ◽  
Leah E. Kammel ◽  
...  
Author(s):  
S. Westenbroek ◽  
J. S. Stewart ◽  
C. A. Buchwald ◽  
M. Mitro ◽  
J. D. Lyons ◽  
...  

2017 ◽  
Vol 32 (5) ◽  
pp. 1397-1413 ◽  
Author(s):  
Dedi Liu ◽  
Yao Xu ◽  
Shenglian Guo ◽  
Lihua Xiong ◽  
Pan Liu ◽  
...  

2021 ◽  
Author(s):  
Cameron Ross ◽  
Ryley Beddoe ◽  
Greg Siemens

<p>Initialization (spin-up) of a numerical ground temperature model is a critical but often neglected step for solving heat transfer problems in permafrost. Improper initialization can lead to significant underlying model drift in subsequent transient simulations, distorting the effects on ground temperature from future climate change or applied infrastructure.  In a typical spin-up simulation, a year or more of climate data are applied at the surface and cycled repeatedly until ground temperatures are declared to be at equilibrium with the imposed boundary conditions, and independent of the starting conditions.</p><p>Spin-up equilibrium is often simply declared after a specified number of spin-up cycles. In few studies, equilibrium is visually confirmed by plotting ground temperatures vs spin-up cycles until temperatures stabilize; or is declared when a certain inter-cycle-temperature-change threshold is met simultaneously at all depths, such as ∆T ≤ 0.01<sup>o</sup>C per cycle. In this study, we investigate the effectiveness of these methods for determining an equilibrium state in a variety of permafrost models, including shallow and deep (10 – 200 m), high and low saturation soils (S = 100 and S = 20), and cold and warm permafrost (MAGT = ~-10 <sup>o</sup>C and >-1 <sup>o</sup>C). The efficacy of equilibrium criteria 0.01<sup>o</sup>C/cycle and 0.0001<sup>o</sup>C/cycle are compared. Both methods are shown to prematurely indicate equilibrium in multiple model scenarios.  Results show that no single criterion can programmatically detect equilibrium in all tested models, and in some scenarios can result in up to 10<sup>o</sup>C temperature error or 80% less permafrost than at true equilibrium.  A combination of equilibrium criteria and visual confirmation plots is recommended for evaluating and declaring equilibrium in a spin-up simulation.</p><p>Long-duration spin-up is particularly important for deep (10+ m) ground models where thermal inertia of underlying permafrost slows the ground temperature response to surface forcing, often requiring hundreds or even thousands of spin-up cycles to establish equilibrium. Subsequent transient analyses also show that use of a properly initialized 100 m permafrost model can reduce the effect of climate change on mean annual ground temperature of cold permafrost by more than 1 <sup>o</sup>C and 3 <sup>o</sup>C under RCP2.6 and RCP8.5 climate projections, respectively, when compared to an identical 25 m model. These results have important implications for scientists, engineers and policy makers that rely on model projections of long-term permafrost conditions.</p>


2013 ◽  
Vol 43 (11) ◽  
pp. 993-1005 ◽  
Author(s):  
Elizabeth Cole ◽  
Michael Newton

Determining the effectiveness of different riparian buffers for mitigating forest-harvesting impacts on stream temperatures continues to be of interest throughout the world. Four small, low or medium elevation streams in managed western Oregon forests were studied to determine how the arrangement and amount of streamside retention strips (buffers) in clear-cut units influenced stream temperatures. Buffers included (i) no tree, (ii) predominantly sun-sided 12 m wide partial, and (iii) two-sided (Best Management Practice, (BMP)) 15–30 m wide buffers. Harvested units alternated with uncut units along 1800–2600 m study reaches. Impacts of harvesting on stream temperatures were determined by time series comparisons of postharvest and preharvest regressions. Trends for daily maximum and mean stream temperature significantly increased after harvest in no tree buffer units. Partial buffers led to slight (<2 °C) or no increased warming. BMP units led to significantly increased warming, slight, or no increased warming. Temperature responses in uncut units appeared to be linked to responses in upstream harvested units. In many instances, when harvested units exhibited significantly higher postharvest trends, lower trends were observed in the uncut units downstream. Stream temperature trends of 7 day moving maxima indicated warming through the no tree buffer units and some of the BMP units. Peaks in maxima were not maintained in downstream units. Stream temperature responses were related to buffer implementation and stream features, relating to cooling and warming.


2014 ◽  
Vol 31 (8) ◽  
pp. 975-992 ◽  
Author(s):  
K. Matheswaran ◽  
M. Blemmer ◽  
P. Thorn ◽  
D. Rosbjerg ◽  
E. Boegh

2020 ◽  
Author(s):  
Annette Menzel ◽  
Ye Yuan ◽  
Michael Matiu ◽  
Tim H Sparks ◽  
Helfried Scheifinger ◽  
...  

&lt;p&gt;During 1971-2000 phenological responses of wild species in spring and summer matched the warming pattern in Europe, whereas timing of farming activities as well as autumnal leaf colouring did not mirror climate change to the same extent (Menzel et al. GCB 2006). These findings were a backbone of the corresponding global attribution study of the IPCC AR4 (Rosenzweig et al. 2007, 2008). Two decades of warming later, however, new phenological findings suggest that especially a lack of chilling and / or increasing influence of photoperiod may have lowered the phenological temperature response and that adaptation in agricultural management is taking place. We therefore updated the GCB 2006 study by asking three questions: What drives the inherent variation of trends? Can we now detect a warming signal in &amp;#8220;false&amp;#8221; agricultural (i.e. those being directly or indirectly determined by farmers&amp;#8217; management) and autumn phases? Is there still an attributable warming signal in phenology?&lt;/p&gt;&lt;p&gt;The complete phenological dataset of Germany, Austria and Switzerland (1951-2018, ~97.000 times series, corresponding to 96.3% of PEP725 data) was analysed. We determined linear trends, studied their variation by plant traits / phenogroups, across season and time, and followed IPCC methodology for attributing phenological changes to warming patterns.&lt;/p&gt;&lt;p&gt;For spring and summer phases of wild plants we found more (significantly) advancing trends (~90% and ~60% sign.) which were stronger in early spring, at higher elevations, but smaller for non-woody insect-pollinated species. Although mean trend strength decreased, changes in spring were strongly attributable to warming in spring and winter. We had similar but less strong findings for agricultural crops in these seasons. In contrast only ~75% of phenological phases set by farmers&amp;#8217; decisions were advancing, however this was the only phenological group for which the mean advance increased, indicating adaptation. Equally trends in farming phases in spring and summer were attributable to warming in winter and summer, respectively. Leaf coloring and fall was now predominantly delayed (57%) which was attributable to winter and spring warming, too.&lt;/p&gt;&lt;p&gt;Thus, this update of the GCB2006 study demonstrates that there is still a significant and attributable phenological change pattern in Europe, in which number of (significant) trends pointing into the direction of warming increased, but mean trend strength mostly decreased, probably due to a lack of chilling and smaller forcing trends. More attention should be paid to the inherent variability of trends with traits / species groups, season and time triggering divers (e.g. ecological) consequences of these phenological shifts. Still existing differences between the generative period of crops and wild species as well as between the farming season and the general growing season call for more research in this area.&lt;/p&gt;


2009 ◽  
Vol 22 (17) ◽  
pp. 4574-4589 ◽  
Author(s):  
Marcia B. Baker ◽  
Gerard H. Roe

Abstract The framework of feedback analysis is used to explore the controls on the shape of the probability distribution of global mean surface temperature response to climate forcing. It is shown that ocean heat uptake, which delays and damps the temperature rise, can be represented as a transient negative feedback. This transient negative feedback causes the transient climate change to have a narrower probability distribution than that of the equilibrium climate response (the climate sensitivity). In this sense, climate change is much more predictable than climate sensitivity. The width of the distribution grows gradually over time, a consequence of which is that the larger the climate change being contemplated, the greater the uncertainty is about when that change will be realized. Another consequence of this slow growth is that further efforts to constrain climate sensitivity will be of very limited value for climate projections on societally relevant time scales. Finally, it is demonstrated that the effect on climate predictability of reducing uncertainty in the atmospheric feedbacks is greater than the effect of reducing uncertainty in ocean feedbacks by the same proportion. However, at least at the global scale, the total impact of uncertainty in climate feedbacks is dwarfed by the impact of uncertainty in climate forcing, which in turn is contingent on choices made about future anthropogenic emissions.


2013 ◽  
Vol 42 (7-8) ◽  
pp. 2183-2199 ◽  
Author(s):  
Daniel Argüeso ◽  
Jason P. Evans ◽  
Lluís Fita ◽  
Kathryn J. Bormann

Sign in / Sign up

Export Citation Format

Share Document