scholarly journals Comprehensive water quality of the Boulder Creek Watershed, Colorado, during high-flow and low-flow conditions, 2000

2003 ◽  
Author(s):  
Jose Simmonds ◽  
Juan A. Gómez ◽  
Agapito Ledezma

This article contains a multivariate analysis (MV), data mining (DM) techniques and water quality index (WQI) metrics which were applied to a water quality dataset from three water quality monitoring stations in the Petaquilla River Basin, Panama, to understand the environmental stress on the river and to assess the feasibility for drinking. Principal Components and Factor Analysis (PCA/FA), indicated that the factors which changed the quality of the water for the two seasons differed. During the low flow season, water quality showed to be influenced by turbidity (NTU) and total suspended solids (TSS). For the high flow season, main changes on water quality were characterized by an inverse relation of NTU and TSS with electrical conductivity (EC) and chlorides (Cl), followed by sources of agricultural pollution. To complement the MV analysis, DM techniques like cluster analysis (CA) and classification (CLA) was applied and to assess the quality of the water for drinking, a WQI.


2021 ◽  
Author(s):  
Qian Zhang ◽  
James Webber ◽  
Douglas Moyer ◽  
Jeffrey Chanat

<p>A number of statistical approaches have been developed to quantify the overall trend in river water quality, but most approaches are not intended for reporting separate trends for different flow conditions. We propose an approach called FN<sub>2Q</sub>, which is an extension of the flow-normalization (FN) procedure of the well-established WRTDS (“Weighted Regressions on Time, Discharge, and Season”) method. The FN<sub>2Q</sub> approach provides a daily time series of low-flow and high-flow FN flux estimates that represent the lower and upper half of daily riverflow observations that occurred on each calendar day across the period of record. These daily estimates can be summarized into any time period of interest (e.g., monthly, seasonal, or annual) for quantifying trends. The proposed approach is illustrated with an application to a record of total nitrogen concentration (632 samples) collected between 1985 and 2018 from the South Fork Shenandoah River at Front Royal, Virginia (USA). Results show that the overall FN flux of total nitrogen has declined in the period of 1985–2018, which is mainly attributable to FN flux decline in the low-flow class. Furthermore, the decline in the low-flow class was highly correlated with wastewater effluent loads, indicating that the upgrades of treatment technology at wastewater treatment facilities have likely led to water-quality improvement under low-flow conditions. The high-flow FN flux showed a spike around 2007, which was likely caused by increased delivery of particulate nitrogen associated with sediment transport. The case study demonstrates the utility of the FN<sub>2Q</sub> approach toward not only characterizing the changes in river water quality but also guiding the direction of additional analysis for capturing the underlying drivers. The FN<sub>2Q</sub> approach (and the published code) can easily be applied to widely available river monitoring records to quantify water-quality trends under different flow conditions to enhance understanding of river water-quality dynamics. <span>(Journal article: https://doi.org/10.1016/j.scitotenv.2020.143562; R code and data release: https://doi.org/10.5066/P9LBJEY1).</span></p>


2021 ◽  
Author(s):  
Florian Caillon ◽  
Katharina Besemer ◽  
Peter Peduzzi ◽  
Jakob Schelker

AbstractFlood events are now recognized as potentially important occasions for the transfer of soil microbes to stream ecosystems. Yet, little is known about these “dynamic pulses of microbial life” for stream bacterial community composition (BCC) and diversity. In this study, we explored the potential alteration of stream BCC by soil inoculation during high flow events in six pre-alpine first order streams and the larger Oberer Seebach. During 1 year, we compared variations of BCC in soil water, stream water and in benthic biofilms at different flow conditions (low to intermediate flows versus high flow). Bacterial diversity was lowest in biofilms, followed by soils and highest in headwater streams and the Oberer Seebach. In headwater streams, bacterial diversity was significantly higher during high flow, as compared to low flow (Shannon diversity: 7.6 versus 7.9 at low versus high flow, respectively, p < 0.001). Approximately 70% of the bacterial operational taxonomic units (OTUs) from streams and stream biofilms were the same as in soil water, while in the latter one third of the OTUs were specific to high flow conditions. These soil high-flow OTUs were also found in streams and biofilms at other times of the year. These results demonstrate the relevance of floods in generating short and reoccurring inoculation events for flowing waters. Moreover, they show that soil microbial inoculation during high flow enhances microbial diversity and shapes fluvial BCC even during low flow. Hence, soil microbial inoculation during floods could act as a previously overlooked driver of microbial diversity in headwater streams.


2011 ◽  
Author(s):  
Devendra M Amatya ◽  
Thomas M Williams ◽  
Amy E Edwards ◽  
Daniel R Hitchcock

2009 ◽  
Vol 36 (3) ◽  
pp. 519-523 ◽  
Author(s):  
Spyros Beltaos

A hydrologic extreme that can be partly generated by ice effects is low winter flow, which is known for potential impacts on water quality and quantity of rivers receiving effluent discharges or industrial withdrawals. Flow abstraction caused by hydraulic storage during the upstream propagation of an ice cover is quantified using the equations of continuity for ice and water. The flow abstraction is shown to increase with increasing ice concentration, but to decrease with increasing ice cover thickness. Numerical values are consistent with winter abstractions indicated by flow data from Canadian hydrometric stations. The present results further suggest that low-flow conditions in winter should generally improve, or at least not deteriorate, under a warmer climate.


2015 ◽  
Vol 17 (6) ◽  
pp. 1057-1069 ◽  
Author(s):  
P. G. Whitehead ◽  
E. Barbour ◽  
M. N. Futter ◽  
S. Sarkar ◽  
H. Rodda ◽  
...  

The potential impacts of climate change and socio-economic change on flow and water quality in rivers worldwide is a key area of interest.


2001 ◽  
Vol 12 (10) ◽  
pp. 2040-2050 ◽  
Author(s):  
KERSTIN AMANN ◽  
GABRIEL MIL TENBERGER-MIL TENYI ◽  
AURELIA SIMONOVICIENE ◽  
ANDREAS KOCH ◽  
STEPHAN ORTH ◽  
...  

Abstract. Remodeling of vessels is a known feature of renal failure, but it is unclear whether this represents an appropriate or inappropriate response to the known changes in blood flow, shear stress, and wall tension. To investigate remodeling in response to variations in blood flow, first-order mesenteric arteries were exposed to high- and low-flow conditions via the ligation of second-order branches, according to the technique described by Pour-ageaud and De Mey. The resulting changes in vessel geometric features, relative proportions of intima and media, submicroscopic structure, and immunostaining for proliferating cell nuclear antigen (PCNA), endothelin-1 (ET-1), and ETAreceptors were assessed in first-order mesenteric arteries under low-flow and high-flow conditions. Subtotally nephrectomized (SNX) animals were compared with sham-operated rats. Animals either were left untreated or were treated with the ETAreceptor antagonist (ET-RA) LU-135252, because of suggestions in the literature that ET is involved in vascular remodeling in uremia. A highly significant increase in intimal thickness was noted in low-flow arteries (4.21 ± 1.39 μm) of SNX animals, compared with normal-flow arteries (2.06 ± 0.61 μm), but this increase was not observed in sham-operated rats (1.38 ± 0.77 in low-flow arteriesversus2.40 ± 0.35 μm in normal-flow arteries). The increase in intimal thickness in low-flow arteries was abrogated by ET-RA. The medial thickness was increased in untreated SNX animals (19.5 ± 3.61 μm), compared with sham-operated rats, and this increase was also prevented by ET-RA. The medial thickness was not affected by low flow in either sham-operated or SNX animals. In parallel, the number of PCNA-positive intimal cells was higher in low-flow, but not high-flow, arteries of SNX rats, compared with sham-operated rats. No significant change was observed in sham-operated animals. In the media, the number of PCNA-positive cells was higher in untreated SNX animals than in sham-operated rats. The number was even more markedly increased in high-flow, but not low-flow, vessels. This increase was abrogated by ET-RA. It is concluded that, in uremic animals, the response of the intima to low flow and the response of the media to high flow are exaggerated. Both responses are apparently mediated by ET.


Sign in / Sign up

Export Citation Format

Share Document