scholarly journals Reconnaissance of ground-water resources in the North Fork Gunnison River basin, southwestern Colorado

1986 ◽  
2012 ◽  
Vol 66 (9) ◽  
pp. 2007-2013 ◽  
Author(s):  
M. A. F. M. Ribeiro ◽  
Z. M. C. L. Vieira ◽  
M. M. R. Ribeiro

The Brazilian Water Resources Policy (Law 9433/1997) establishes participatory and decentralized management, involving civil society, water users and governmental bodies, with the basin committees as the basis of this process. Fifteen years after its implementation, it is possible to perceive accomplishments, but, at the same time, there are some difficulties in regards to the operation of the basin committees in the country. Considering the North Paraíba River Basin – which is completely included in the State of Paraíba, Northeastern Brazil, and presents great social and economic importance for the state – this article analyzes the process of formation, installation and functioning of its Basin Committee (CBH-PB), focusing on its composition, the reasons for the mobilization and demobilization of its members, the intra-relations between segments, and the inter-relations between the CBH-PB and other entities of the State Water Management System (the Water Executive Agency and the State Water Resources Council). The level of decentralization and the quality of participatory management (as it is being performed at the CBH-PB) are discussed and guidelines are suggested in order to allow greater effectiveness to the committee.


2013 ◽  
Vol 14 (3) ◽  
pp. 677-699 ◽  
Author(s):  
Nicholas E. Wayand ◽  
Alan F. Hamlet ◽  
Mimi Hughes ◽  
Shara I. Feld ◽  
Jessica D. Lundquist

Abstract The data required to drive distributed hydrological models are significantly limited within mountainous terrain because of a scarcity of observations. This study evaluated three common configurations of forcing data: 1) one low-elevation station, combined with empirical techniques; 2) gridded output from the Weather Research and Forecasting Model (WRF); and 3) a combination of the two. Each configuration was evaluated within the heavily instrumented North Fork American River basin in California during October–June 2000–10. Simulations of streamflow and snowpack using the Distributed Hydrology Soil and Vegetation Model (DHSVM) highlighted precipitation and radiation as variables whose sources resulted in significant differences. The best source of precipitation data varied between years. On average, the WRF performed as well as the single station distributed using the Parameter Regression on Independent Slopes Model (PRISM). The average percent biases in simulated streamflow were 3% and 1%, for configurations 1 and 2, respectively, even though precipitation compared directly with gauge measurements was biased high by 6% and 17%, suggesting that gauge undercatch may explain part of the bias. Simulations of snowpack using empirically estimated longwave irradiance resulted in melt rates lower than those observed at high-elevation sites, while at lower elevations the same forcing caused significant midwinter melt that was not observed. These results highlight the complexity of how forcing data sources impact hydrology over different areas (high- versus low-elevation snow) and different time periods. Overall, results support the use of output from the WRF model over empirical techniques in regions with limited station data.


Sign in / Sign up

Export Citation Format

Share Document