susquehanna river
Recently Published Documents


TOTAL DOCUMENTS

337
(FIVE YEARS 30)

H-INDEX

22
(FIVE YEARS 1)

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Shannon L. White ◽  
Michael S. Eackles ◽  
Tyler Wagner ◽  
Megan Schall ◽  
Geoff Smith ◽  
...  

Abstract Objective Flathead catfish are rapidly expanding into nonnative waterways throughout the United States. Once established, flathead catfish may cause disruptions to the local ecosystem through consumption and competition with native fishes, including species of conservation concern. Flathead catfish often become a popular sport fish in their introduced range, and so management strategies must frequently balance the need to protect native and naturalized fauna while meeting the desire to maintain or enhance fisheries. However, there are currently few tools available to inform management of invasive flathead catfish (Pylodictis olivaris). We describe a suite of microsatellite loci that can be used to characterize population structure, predict invasion history, and assess potential mitigation strategies for flathead catfish. Results Our panel of 13 microsatellite loci were polymorphic and appear to be informative for population genetic studies of flathead catfish. We found moderate levels of diversity in four nonnative collections of flathead catfish in the Pennsylvania and Maryland sections of the Susquehanna River and the Schuylkill River, Pennsylvania. Analyses suggested patterns of genetic differentiation within- and among-rivers, highlighting the utility of this marker panel for understanding the structure and assessing the degree of connectivity among flathead catfish populations.


Author(s):  
Joshua J. Newhard ◽  
Julie Devers ◽  
Steve Minkkinen ◽  
Mike Mangold

Abstract American Eel Anguilla rostrata populations along the Atlantic coast of the United States have been in decline over the past several decades. One suggested cause of the decline is construction of barriers that block access to upstream tributaries where they can spend a significant portion of their lives. Success of reintroduction efforts above barriers has rarely been evaluated. Within the Susquehanna River (Chesapeake Bay watershed), over 1 million eels were released above four major downstream barriers in the past decade. We used backpack electrofishing and tagging to monitor growth, sexual differentiation, and population density of reintroduced eels in Buffalo Creek, a tributary to the Susquehanna River (Pennsylvania). From 2012 to 2019, we caught over 2,000 individuals, tagged more than 1,800, and recaptured 229. Recaptured eels provided insight into growth, sexual differentiation, and movement. Nearly 99% of recaptures remained near stocking locations. The average growth rate was 47.8 mm/y and ranged between −5.8 and 116.0 mm/y. Females generally grew significantly faster than males, and growth rates of several females exceeded 100 mm/y, a rate typically associated with estuarine residents. The population density within stocking sites was over 2,300 eels/km, roughly four times higher than Susquehanna River tributaries below the most downstream dam, and exceeded the target stocking goal of 529 eels/km. While we caught most eels in areas sampled near stocking locations, we captured some eels in smaller upstream tributaries away from stocking locations. Our study is the first to examine how reintroduced eels grow following stocking above four major dams on the Susquehanna River. We suggest that managers considering moving eels above blockages account for release location and density to achieve desired benefits to the overall population.


2021 ◽  
Author(s):  
Mary Ann Fajvan ◽  
Randall S Morin

Abstract Landscape-scale maps of tree species densities are important tools for managing ecosystems threatened by forest pests. Eastern hemlock dominates riparian forests throughout its range. As a conifer in a deciduous landscape, hemlock plays an ecohydrological role, especially when other species are dormant. The nonnative, hemlock woolly adelgid has caused widespread hemlock decline and mortality. We used two existing basal area raster layers first to identify Chesapeake Bay subwatersheds with ≥6 percent hemlock basal area and second to quantify hemlock basal area densities within fixed-width riparian buffers of 50 m, 100 m, 250 m, and 500 m. Hemlock densities were higher in riparian zones compared with entire subwatersheds. In five subwatersheds, 50 m and 100 m zones had higher percentages of pixels with ≥25 percent hemlock basal area. We produced maps identifying hemlock riparian densities in the Pine Creek Watershed, which managers can use to prioritize sites for supplemental conifer planting under anticipated hemlock decline. Study Implications: Forest inventory and satellite data were used to map riparian hemlock stands in the Pine Creek Watershed (Pennsylvania). Pine Creek is a subwatershed of the Chesapeake Bay and an important tributary of West Branch Susquehanna River. Pine Creek headwaters are a brook trout refuge, and hemlock shading along streams stabilizes water temperature. These fisheries provide recreational value and economic support to local communities. Hemlock woolly adelgid, an invasive insect, has recently entered the watershed and will cause hemlock decline and mortality. Our maps assist the Pine Creek Watershed Council in identifying riparian areas for supplemental planting of alternative conifer seedlings.


Author(s):  
Abigail M. Deaven ◽  
Christina M. Ferreira ◽  
Elizabeth A. Reed ◽  
Jeremy R. Chen See ◽  
Nora A. Lee ◽  
...  

Freshwater can support the survival of the enteric pathogen Salmonella, though temporal Salmonella diversity in a large watershed has not been assessed. At 28 locations within the Susquehanna River basin, 10-liter samples were assessed in spring and summer over two years. Salmonella prevalence was 49%, and increased river discharge was the main driver of Salmonella presence. The amplicon-based sequencing tool, CRISPR-SeroSeq, was used to determine serovar population diversity and detected 25 different Salmonella serovars, including up to ten serovars from a single water sample. On average there were three serovars per sample, and 80% of Salmonella-positive samples contained more than one serovar. Serovars Give, Typhimurium, Thompson, and Infantis were identified throughout the watershed and over multiple collections. Seasonal differences were evident: serovar Give was abundant in the spring, while serovar Infantis was more frequently identified in the summer. Eight of the ten serovars most commonly associated with human illness were detected in this study. Crucially, six of these serovars often existed in the background, where they were masked by a more abundant serovar(s) in a sample. Serovars Enteritidis and Typhimurium, especially, were masked in 71% and 78% of samples where they were detected, respectively. Whole genome sequencing-based phylogeny demonstrated that strains within the same serovar collected throughout the watershed were also very diverse. The Susquehanna River basin is the largest system where Salmonella prevalence and serovar diversity has been temporally and spatially investigated and this study reveals an extraordinary level of inter- and intra-serovar diversity. Importance Salmonella is a leading cause of bacterial foodborne illness in the United States, and outbreaks linked to fresh produce are increasing. Understanding Salmonella ecology in freshwater is of importance, especially where irrigation practices or recreational use occur. As the third largest river in the United States east of the Mississippi, the Susquehanna River is the largest freshwater contributor to the Chesapeake Bay, and the largest river system where Salmonella diversity has been studied. Rainfall, and subsequent high river discharge rates were the greatest indicator of Salmonella presence in the Susquehanna and its tributaries. Several Salmonella serovars were identified, including eight commonly associated with foodborne illness. Many clinically important serovars were present at a low frequency within individual samples so could not be detected by conventional culture methods. The technologies employed here reveal an average of three serovars in a 10-liter sample of water, and up to 10 serovars in a single sample.


2021 ◽  
pp. 837-846
Author(s):  
Siamak Aram ◽  
Maria H. Rivero ◽  
Nikesh K. Pahuja ◽  
Roozbeh Sadeghian ◽  
Joshua L. Ramirez Paulino ◽  
...  

2021 ◽  
Vol 102 (1) ◽  
pp. S25-S32
Author(s):  
Andrew C. Ross ◽  
Charles A. Stock ◽  
Dennis Adams-Smith ◽  
Keith Dixon ◽  
Kirsten L. Findell ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document