scholarly journals London superconductor and time-varying mesoscopic LC circuits

2021 ◽  
Vol 67 (5 Sep-Oct) ◽  
pp. 1-6
Author(s):  
Inácio de Almeida Pedrosa ◽  
Luciano Nascimento

In this work we study the classical and quantum dynamics of a London superconductor and of a time-dependent mesoscopic or nanoscale LC circuit by assuming that the inductance and capacitance vary exponentially with time at constant rate. Surprisingly, we find that the behavior of these two systems are equivalent, both classically and quantum mechanically, and can be mapped into a standard damped harmonic oscillator which is described by the Caldirola-Kanai Hamiltonian. With the aid of the dynamical invariant method and Fock states, we solve the time-dependent Schr\"odinger equation associated with this Hamiltonian and calculate some important physical properties of these systems such as expectation values of the charge and magnetic flux, their variances and the respective uncertainty principle.

2016 ◽  
Vol 30 (12) ◽  
pp. 1650122 ◽  
Author(s):  
I. A. Pedrosa ◽  
E. Nogueira ◽  
I. Guedes

We discuss the problem of a mesoscopic LC circuit with a negative inductance ruled by a time-dependent Hermitian Hamiltonian. Classically, we find unusual expressions for the Faraday’s law and for the inductance of a solenoid. Quantum mechanically, we solve exactly the time-dependent Schrödinger equation through the Lewis and Riesenfeld invariant operator method and construct Gaussian wave packet solutions for this time-dependent LC circuit. We also evaluate the expectation values of the charge and the magnetic flux in these Gaussian states, their quantum fluctuations and the corresponding uncertainty product.


2021 ◽  
pp. 2150201
Author(s):  
I. A. Pedrosa

In this work we present a simple and elegant approach to study the adiabatic and nonadiabatic evolution of a generalized damped harmonic oscillator which is described by the generalized Caldirola–Kanai Hamiltonian, in both classical and quantum contexts. Based on time-dependent dynamical invariants, we find that the geometric phase acquired when the damped oscillator evolves adiabatically in time provides a direct connection between the classical Hannay’s angle and the quantum Berry’s phase. In addition, we solve the time-dependent Schrödinger equation for this system and calculate various quantum properties of the damped generalized harmonic one, such as coherent states, expectation values of the position and momentum operators, their quantum fluctuations and the associated uncertainty product.


2021 ◽  
pp. 2150087
Author(s):  
I. A. Pedrosa

In this work, we analyze the quantum dynamics of a generalized pendulum with a time-varying mass increasing exponentially and constant gravitation. By using Lewis–Riesenfeld invariant approach and Fock states, we solve the time-dependent Schrödinger equation for this system and write its solutions in terms of solutions of the Milne–Pinney equation. We also construct coherent states for the quantized pendulum and use both Fock and coherent states to investigate some important physical proprieties of the quantized pendulum such as eigenvalues of the angular displacement and momentum, their quantum variances as well as the respective uncertainty principle. Finally, we derive the geometric, dynamical and Berry phases for the time-dependent generalized pendulum.


2018 ◽  
Vol 64 (1) ◽  
pp. 30
Author(s):  
Surarit Pepore

The application of the integrals of the motion of a quantum system in deriving Green function or propagator is established. The Greenfunction is shown to be the eigenfunction of the integrals of the motion which described initial points of the system trajectory in the phasespace. The explicit expressions for the Green functions of the damped harmonic oscillator, the harmonic oscillator with strongly pulsatingmass, and the harmonic oscillator with mass growing with time are obtained in co-ordinate representations. The connection between theintegrals of the motion method and other method such as Feynman path integral and Schwinger method are also discussed.


Sign in / Sign up

Export Citation Format

Share Document