Quantum motion, coherent states and geometric phase of a generalized damped pendulum

2021 ◽  
pp. 2150087
Author(s):  
I. A. Pedrosa

In this work, we analyze the quantum dynamics of a generalized pendulum with a time-varying mass increasing exponentially and constant gravitation. By using Lewis–Riesenfeld invariant approach and Fock states, we solve the time-dependent Schrödinger equation for this system and write its solutions in terms of solutions of the Milne–Pinney equation. We also construct coherent states for the quantized pendulum and use both Fock and coherent states to investigate some important physical proprieties of the quantized pendulum such as eigenvalues of the angular displacement and momentum, their quantum variances as well as the respective uncertainty principle. Finally, we derive the geometric, dynamical and Berry phases for the time-dependent generalized pendulum.

2021 ◽  
Vol 67 (5 Sep-Oct) ◽  
pp. 1-6
Author(s):  
Inácio de Almeida Pedrosa ◽  
Luciano Nascimento

In this work we study the classical and quantum dynamics of a London superconductor and of a time-dependent mesoscopic or nanoscale LC circuit by assuming that the inductance and capacitance vary exponentially with time at constant rate. Surprisingly, we find that the behavior of these two systems are equivalent, both classically and quantum mechanically, and can be mapped into a standard damped harmonic oscillator which is described by the Caldirola-Kanai Hamiltonian. With the aid of the dynamical invariant method and Fock states, we solve the time-dependent Schr\"odinger equation associated with this Hamiltonian and calculate some important physical properties of these systems such as expectation values of the charge and magnetic flux, their variances and the respective uncertainty principle.


2014 ◽  
Vol 28 (26) ◽  
pp. 1450177 ◽  
Author(s):  
I. A. Pedrosa ◽  
D. A. P. de Lima

In this paper, we study the generalized harmonic oscillator with arbitrary time-dependent mass and frequency subjected to a linear velocity-dependent frictional force from classical and quantum points of view. We obtain the solution of the classical equation of motion of this system for some particular cases and derive an equation of motion that describes three different systems. Furthermore, with the help of the quantum invariant method and using quadratic invariants we solve analytically and exactly the time-dependent Schrödinger equation for this system. Afterwards, we construct coherent states for the quantized system and employ them to investigate some of the system's quantum properties such as quantum fluctuations of the coordinate and the momentum as well as the corresponding uncertainty product. In addition, we derive the geometric, dynamical and Berry phases for this nonstationary system. Finally, we evaluate the dynamical and Berry phases for three special cases and surprisingly find identical expressions for the dynamical phase and the same formulae for the Berry's phase.


1998 ◽  
Vol 57 (2) ◽  
pp. 1489-1498 ◽  
Author(s):  
Fred Cooper ◽  
John Dawson ◽  
Salman Habib ◽  
Robert D. Ryne

Sign in / Sign up

Export Citation Format

Share Document