uncertainty product
Recently Published Documents


TOTAL DOCUMENTS

49
(FIVE YEARS 12)

H-INDEX

6
(FIVE YEARS 1)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jeong Ryeol Choi

AbstractThe characteristics of nonstatic quantum light waves in the coherent state in a static environment is investigated. It is shown that the shape of the wave varies periodically as a manifestation of its peculiar properties of nonstaticity like the case of the Fock-state analysis for a nonstatic wave. A belly occurs in the graphic of wave evolution whenever the wave is maximally displaced in the quadrature space, whereas a node takes place every time the wave passes the equilibrium point during its oscillation. In this way, a belly and a node appear in turn successively. Whereas this change of wave profile is accompanied by the periodic variation of electric and magnetic energies, the total energy is conserved. The fluctuations of quadratures also vary in a regular manner according to the wave transformation in time. While the resultant time-varying uncertainty product is always larger than (or, at least, equal to) its quantum-mechanically allowed minimal value ($$\hbar /2$$ ħ / 2 ), it is smallest whenever the wave constitutes a belly or a node. The mechanism underlying the abnormal features of nonstatic light waves demonstrated here can be interpreted by the rotation of the squeezed-shape contour of the Wigner distribution function in phase space.


Entropy ◽  
2021 ◽  
Vol 23 (11) ◽  
pp. 1469
Author(s):  
Z. Khani ◽  
S. V. Mousavi ◽  
S. Miret-Artés

In this work, momentum-space decoherence using minimum and nonminimum-uncertainty-product (stretched) Gaussian wave packets in the framework of Caldeira–Leggett formalism and under the presence of a linear potential is studied. As a dimensionless measure of decoherence, purity, a quantity appearing in the definition of the linear entropy, is studied taking into account the role of the stretching parameter. Special emphasis is on the open dynamics of the well-known cat states and bosons and fermions compared to distinguishable particles. For the cat state, while the stretching parameter speeds up the decoherence, the external linear potential strength does not affect the decoherence time; only the interference pattern is shifted. Furthermore, the interference pattern is not observed for minimum-uncertainty-product-Gaussian wave packets in the momentum space. Concerning bosons and fermions, the question we have addressed is how the symmetry of the wave functions of indistinguishable particles is manifested in the decoherence process, which is understood here as the loss of being indistinguishable due to the gradual emergence of classical statistics with time. We have observed that the initial bunching and anti-bunching character of bosons and fermions, respectively, in the momentum space are not preserved as a function of the environmental parameters, temperature, and damping constant. However, fermionic distributions are slightly broader than the distinguishable ones and these similar to the bosonic distributions. This general behavior could be interpreted as a residual reminder of the symmetry of the wave functions in the momentum space for this open dynamics.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Jascha Zander ◽  
Roman Schnabel

AbstractThe change of a quantum state can generally only be fully monitored through simultaneous measurements of two non-commuting observables $$\hat{X}$$ X ̂ and $$\hat{Y}$$ Y ̂ spanning a phase space. A measurement device that is coupled to the thermal environment provides at a time a pair of values that have a minimal uncertainty product set by the Heisenberg uncertainty relation, which limits the precision of the monitoring. Here, we report on an optical ensemble measurement setup that is able to monitor the time-dependent change of the quantum state’s displacement in phase space ($$\langle \hat{X}(t)\rangle ;\langle \hat{Y}(t)\rangle$$ ⟨ X ̂ ( t ) ⟩ ; ⟨ Y ̂ ( t ) ⟩ ) with an imprecision 10 dB below the Heisenberg uncertainty limit. Our setup provides pairs of values (X(ti); Y(ti)) from simultaneous measurements at subsequent times ti. The measurement references are not coupled to the thermal environment but are established by an entangled quantum state. Our achievement of a tenfold reduced quantum imprecision in monitoring arbitrary time-dependent displacements supports the potential of the quantum technology required for entanglement-enhanced metrology and sensing as well as measurement-based quantum computing.


2021 ◽  
pp. 2150201
Author(s):  
I. A. Pedrosa

In this work we present a simple and elegant approach to study the adiabatic and nonadiabatic evolution of a generalized damped harmonic oscillator which is described by the generalized Caldirola–Kanai Hamiltonian, in both classical and quantum contexts. Based on time-dependent dynamical invariants, we find that the geometric phase acquired when the damped oscillator evolves adiabatically in time provides a direct connection between the classical Hannay’s angle and the quantum Berry’s phase. In addition, we solve the time-dependent Schrödinger equation for this system and calculate various quantum properties of the damped generalized harmonic one, such as coherent states, expectation values of the position and momentum operators, their quantum fluctuations and the associated uncertainty product.


Entropy ◽  
2021 ◽  
Vol 23 (5) ◽  
pp. 636
Author(s):  
Sergio De Nicola ◽  
Renato Fedele ◽  
Dušan Jovanovic ◽  
Margarita Man'ko ◽  
Vladimir Man'ko

The tomography of a single quantum particle (i.e., a quantum wave packet) in an accelerated frame is studied. We write the Schrödinger equation in a moving reference frame in which acceleration is uniform in space and an arbitrary function of time. Then, we reduce such a problem to the study of spatiotemporal evolution of the wave packet in an inertial frame in the presence of a homogeneous force field but with an arbitrary time dependence. We demonstrate the existence of a Gaussian wave packet solution, for which the position and momentum uncertainties are unaffected by the uniform force field. This implies that, similar to in the case of a force-free motion, the uncertainty product is unaffected by acceleration. In addition, according to the Ehrenfest theorem, the wave packet centroid moves according to classic Newton's law of a particle experiencing the effects of uniform acceleration. Furthermore, as in free motion, the wave packet exhibits a diffraction spread in the configuration space but not in momentum space. Then, using Radon transform, we determine the quantum tomogram of the Gaussian state evolution in the accelerated frame. Finally, we characterize the wave packet evolution in the accelerated frame in terms of optical and simplectic tomogram evolution in the related tomographic space.


2021 ◽  
Author(s):  
Roberto Baginski Batista Santos ◽  
Vinicius de Souza Ferreira Lisboa

Abstract Coupled oscillators are among the simplest composite quantum systems in which the interplay of entanglement and interaction may be explored. We examine the effects of coupling on the quantum fluctuations of the coordinates and momenta of the oscillators in a single-excitation entangled Bell-like state. We discover that coupling acts as a mechanism for noise transfer between one pair of coordinate and momentum and another. Through this noise transfer mechanism, the uncertainty product is lowered, on average, relatively to its non-coupled level for one pair of coordinate and momentum and it is enhanced for the other pair. This novel mechanism for noise transfer may be explored in precision measurements in entanglement-assisted sensing and metrology.


2019 ◽  
Vol 34 (30) ◽  
pp. 1950187 ◽  
Author(s):  
I. A. Pedrosa ◽  
B. F. Ramos ◽  
K. Bakke ◽  
Alberes Lopes de Lima

We discuss the quantum theory of an harmonic oscillator with time-dependent mass and frequency submitted to action of a complex time-dependent linear potential with [Formula: see text] symmetry. Combining the Lewis and Riesenfeld approach to time-dependent non-Hermitian Hamiltonians having [Formula: see text] symmetry and linear invariants, we solve the time-dependent Schrödinger equation for this problem and use the corresponding quantum states to construct a Gaussian wave packet solution. We show that the shape of this wave packet does not depend on the driving force. Afterwards, using this wave packet state, we calculate the expectation values of the position and momentum, their fluctuations and the associated uncertainty product. We find that these expectation values are complex numbers and as a consequence the position and momentum operators are not physical observables and the uncertainty product is physically unacceptable.


Sign in / Sign up

Export Citation Format

Share Document